What do we know about potential waterborne pathogens in livestock and water in NZ?

Nigel French

Drinking Water Workshop, Hamilton, 19th Sept 2017

Outline

- Waterborne pathogens: *Campylobacter, Giardia, Cryptosporidium*, Shiga toxin-producing *E. coli*
- Prevalence in animals
- Prevalence in water
- Using molecular typing to link animals, water and human cases
- Havelock North application of whole genome sequencing

Waterborne zoonotic infections include:

Protozoa

- Cryptosporidium
- Giardia
- Toxoplasma
- others

Bacteria

- Campylobacter
- Salmonella
- *E. coli* 0157
- Leptospira

© 2004 Dennis Kunkel Microscopy, Inc.

Water borne diseases high on the list of notifiable diseases in New Zealand

National surveillance data 12-monthly notification rate changes¹

Many also foodborne

Source: ESR Ltd Quarter to March 2017

Cryptosporidium and Giardia

Cryptosporidium and Giardia

C	Cryptosporidium	Giardia	
Country	Rate of cryptosporidiosis per 100000 population	Rate of giardiasis per 100 000 population	
New Zealand	23.8	32.9	E.C.
Australia	15.8	Not	
		available	
United Kingdom	8.5	5.5	A tale of two parasites: the comparative epidemiology of cryptosporidiosis and giardiasis
United States	2.8	6.7	
Germany	1.6	5.5	

S. J. SNEL¹, M. G. BAKER^{1*}, V. KAMALESH¹, N. FRENCH² and J. LEARMONTH²

Cryptosporidium and Giardia: seasonal patterns

year

Cryptosporidium: two species

Cryptosporidium and Giardia

RESEARCH ARTICLE

Local and global genetic diversity of protozoan parasites: Spatial distribution of *Cryptosporidium* and *Giardia* genotypes

Juan C. Garcia–R¹*, Nigel French¹, Anthony Pita¹, Niluka Velathanthiri¹, Rima Shrestha², David Hayman¹

Al Mawly et al. Parasites & Vectors (2015) 8:240 DOI 10.1186/s13071-015-0855-9

RESEARCH

Open Access

Cross sectional study of prevalence, genetic diversity and zoonotic potential of *Cryptosporidium parvum* cycling in New Zealand dairy farms

Julanda Al Mawly¹, Alex Grinberg^{2*}, Niluka Velathanthiri² and Nigel French¹

Strain types of *Crypto* and *Giardia*

Cryptosporidium

countries (except Ireland)

Giardia

Prevalence of *Cryptosporidium* and *Giardia* in cattle faeces Risk factors for neonatal calf diarrhoea and enteropathogen shedding in New Zealand dairy farms

J. Al Mawly ^a, A. Grinberg ^{b,*}, D. Prattley ^a, J. Moffat ^c, J. Marshall ^a, N. French ^a

^a mEpiLab, Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, 4410, New Zealand ^b Infectious Diseases Group, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, 4410, New Zealand ^c MSD Animal Health, 33 Whakatiki Street, Upper Hutt, Wellington 5018, New Zealand

New Zealand Veterinary Journal 63(3), 147–152, 2015

Scientific Article

Prevalence of endemic enteropathogens of calves in New Zealand dairy farms

J Al Mawly*, A Grinberg^{†§}, D Prattley*, J Moffat[‡] and N French*

- Year of study: 2011
- 1,283 samples
- 97 dairy farms

Recent prevalence study in cattle: Farm level

	1-5 day-old calves	9-21 day-old calves
Rotavirus	46% (31-67)	57% (41-80)
Coronavirus	13.7% (7-28)	30.5% (20-48)
C. parvum	17.5% (8-35)	52% (36-75)
Salmonella spp .	3% (1-15)	4% (1-16)
K99 E. coli	11% (5-25)	Not tested
Giardia spp .	23% (13-41)	88% (67-116)

Both highly prevalent: Giardia mainly non-zoonotic strains

Recent prevalence study in cattle : Calf level

Enteropathogen	Number of calves positive for these enteropathogens		
	9 to 21-day-old calves	1 to 5-day-old calves	
Rotavirus (total)	158/797 (19.8%)	86/429 (20%)	
Coronavirus (total)	49/797 (6.1%)	23/429 (5.3%)	
C. parvum (total)	126/797 (15.8%)	25/429 (5.8%)	
Salmonella spp. (total)	4/797 (0.5%)	3/429 (0.6%)	

Ecosystem health and farming: Faecal outputs of cattle...and humans

- Cattle: Number of defecations
 - 9 16, average 12 per day
 - Average 2kg per defecation
 - Total output of 25kg per cow per day.
- 9 million cattle in NZ
- 230,000 tonnes faecal material per day...
- 84 million tonnes per year
- Humans 800 tonnes per day

Source Dr Brent Gilpin ESR Ltd

Water sampling: abstraction points

- Location of 20 drinking water abstraction sites monitored for water quality, September 2009 to July 2016.
- Letters ground water
- Numbers surface water
- Selected to represent different catchment types
- 4 samples per site per year, N=540

E. coli O157:H7 (and other STEC)

E. coli O157:H7 (and other STEC)

- Bacterial infection associated with transmission from ruminants (mainly cattle)
- 80% bloody diarrhoea
- Highest prevalence in young children
- ~8% develop complications

– HUS

Highest prevalence in dairy farming areas

Jaros et al. BMC Infectious Diseases 2013, 13:450 http://www.biomedcentral.com/1471-2334/13/450

RESEARCH ARTICLE

A prospective case–control and molecular epidemiological study of human cases of Shiga toxin-producing *Escherichia coli* in New Zealand

Patricia Jaros^{1*}, Adrian L Cookson², Donald M Campbell³, Thomas E Besser⁴, Smriti Shringi⁴, Graham F Mackereth⁵, Esther Lim⁵, Liza Lopez⁶, Muriel Dufour⁵, Jonathan C Marshall¹, Michael G Baker⁷, Steve Hathaway³, Deborah J Prattley¹ and Nigel P French^{1,8}

- Significant environmental risk factors included:
 - Children <5 contact with farm animals
 - Water recreation and drinking
 - Contact with cattle faeces
- No food-related risk factors

REPORT OF

_

Open Access

STEC prevalence on dairy farms (S. Browne)

- Study of 102 farms, 1508 calves
- Year of study: 2014
- MPI/MIA funded study
- Validated culture independent assay (NeoSEEK)
- Simultaneously detects serotype and stx/eae genes (i.e. in same bacterium)

STEC O157 relatively recently introduced into New Zealand

- At least 3 introductions in last 40-50 years
- Population of STEC O157 grew rapidly after 1985
- First human case in 1993

From P. Jaros MPI/MIA funded PhD student Allan Wilson Centre funding

Livestock importations into New Zealand

Binney et al. NZ Vet J 2014, 62: 309 Quantification of historical livestock importations into New Zealand, 1860-1979

Population sizes of STEC O157 and rise in dairying

Campylobacter (jejuni and coli)

Marked Campylobacteriosis Decline after Interventions Aimed at Poultry, New Zealand

Ann Sears, Michael G. Baker, Nick Wilson, Jonathan Marshall, Petra Muellner, Donald M. Campbell, Robin J. Lake, and Nigel P. French Sears et al 2011, Emerging Infectious Diseases 17, 1007-15

Spatial and temporal modelling of cases

Different sources for urban and rural dwellers

- Using genotyping and modelling
- Jonathan Marshall, Jing Liao and Martin Hazelton

Distinguishing between ruminant sources: sporadic cases source attribution using genotyping

Campylobacter: prevalence in animals and water

Infection, Genetics and Evolution 9 (2009) 1311-1319

Assigning the source of human campylobacteriosis in New Zealand: A comparative genetic and epidemiological approach

Petra Mullner^{a,b,*}, Simon E.F. Spencer^{a,1}, Daniel J. Wilson^c, Geoff Jones^d, Alasdair D. Noble^d, Anne C. Midwinter^a, Julie M. Collins-Emerson^a, Philip Carter^e, Steve Hathaway^b, Nigel P. French^a

Campylobacter: prevalence in animals and water

Table 1

Overview of samples collected in the Manawatu, New Zealand, 2005-2008.

Source	Samples collected	Samples culture positive ^a	Samples confirmed C. jejuni ^b
Human cases Fresh chicken carcasses	773 562	661 454	584 415
Retail meats beef	400	44	33
Retail meats lamb On-farm cattle	418 145	112 119	103 80 1
On-farm sheep	133	92	61 40-50%
Environmental water	335	140	82 ~25%
Total samples	2766	1622	1215

- More recent study 32 cattle/sheep farms 2015-2016 >80% prev
- Allowing for imperfect test sensitivity: ~100% carriage in all ruminants?
- Similar water estimate to Till et al 2008, JWH (*C. jejuni* in ~30% samples)
- Waikato abstraction points >50% +ve (groundwater -ve)

Importance of water borne *Campylobacter* for public health?

Vol. 75, No. 19

Novel Clonal Complexes with an Unknown Animal Reservoir Dominate *Campylobacter jejuni* Isolates from River Water in New Zealand[∇]

P. E. Carter,¹* S. M. McTavish,¹† H. J. L. Brooks,² D. Campbell,³ J. M. Collins-Emerson,⁴ A. C. Midwinter,⁴ and N. P. French⁴

Campylobacter sources in water

Most Campylobacter in water in Manawatu from wildlife – even in dairy catchments

Strains found in pukeko have not been found in humans But cattle and sheep ones have....

Water low attribution to <u>sporadic</u> cases of campylobacteriosis (<5%)

NZ drinking water outbreaks: Campylobacter

- 1986
 - Ashburton, 19 cases in two weeks attributed to poorly chlorinated drinking water drawn from river
- 1990
 - 44 cases linked to livestock contaminating camp water supply
- 1997
 - 67 cases linked to drinking water contaminated with river water
- 2008 -
 - Pahiatua, Manawatu 9 cases linked to rainfall and river flow
- 2012 -
 - Darfield incident 110 cases
- 2016 -
 - Havelock North 5000 cases

Manawatu drinking water outbreak in 2008

Attribution of Pahiatua 2008 human C. jejuni isolates

Use of molecular typing to inform the source of the Havelock North outbreak

- Two methods used
 - Mbit
 - Whole genome sequencing
- Isolates compared
 - Animals
 - Water
 - Human cases

Sampling and screening for outbreak relevant isolates: MBiT

- 100s of samples were taken from patients, environmental water samples and animal faecal from neighboring paddocks;
- MBiT analysis used as cheap rapid screen to exclude outbreak irrelevant isolates.

MBiT (Multiplex Ligation-Dependent Probe Amplification–Binary Typing) analysis for presence/absence of 18 genes

Multiple types found in water but not all in humans

Whole-genome sequencing for the outbreak isolates

To test hypotheses at a higher resolution **120** isolates sent for whole-genome sequencing.

- human (patient) isolates, n = 80;
- animal (sheep and cow) isolates: n = 16;
- environmental isolates: n = 24;
 - reticulated water
 - bore water
 - river water
 - pit water
 - surface water

Initial 7 gene MLST analysis: compositions were similar

- ST42 and ST61 internationally <u>ruminant</u> strains
- Next step to use all WGS data
- Applied to ST42 and ST3610

Relationship of ST-42 non-human isolates by ad hoc wgMLST

Isolates from **ovine**, **reticulated water**, **bore (well) water** and surface water clustered together.

New Zealand historical ST42 isolates were used for comparison.

Phylogenetic tree inferred from the sequences of 1075 shared-loci found in *ad hoc* wgMLST of 66 ST-42 isolates.

Phylogenetic tree inferred from the sequences of 1390 shared-loci found in *ad hoc* wgMLST analysis of the 26 ST-3610 isolates.

Summary of Havelock North analysis

- Using *ad hoc* wgMLST and phylogenetic analysis evidence of clonal expansion in branches of ST42 and ST3610.
- Branches contained **patient isolates** mixed with **water** and **ovine isolates** from fields adjacent to the bores (wells) supplying the reticulated water, **strongly** suggesting their close relationship and a **likely origin of contamination of the water supply**.
- Distantly related to historical isolates
- The outbreak was caused by multiple clones of *C. jejuni* of different lineages.

Conclusions

- Waterborne pathogens highly prevalent in livestock in New Zealand.
- Surface waters frequently contaminated with ruminant-associated pathogens.
- STEC are biggest concern due to severe health impacts.
- Increasing stock numbers and densities likely to increase transmission between animals, and from animals to people.
- Adverse weather events (climate change) also likely to exacerbate transmission unless extra measures in place.
- New tools such as Whole Genome Sequencing and modelling enable robust inference to be made, linking animal sources to water and human health.

Acknowledgements

- ^mEpiLab team: particularly David Wilkinson, Ji Zhang, Jonathan Marshall, Patrick Biggs, Anthony Pita, David Hayman, Juan-Carlos Garcia, Springer Browne, Patricia Jaros, Julanda AlMawly and Anne Midwinter
- Alex Grinberg
- ESR: Phil Carter, Brent Gilpin, Angela Cornelius
- University of Otago: Michael Baker, Simon Hales, Aparna Lal
- MidCentral Public Health, MedLab Central
- Ministry for Primary Industries team

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT HĪKINA WHAKATUTUKI

Funding

MARSDEN

MARSDEN FUND

te pūtea rangahau

Relationship between ST-42 human isolates with wgMLST

Water- low attribution for sporadic cases (<5%)

Concentration of crypto oocysts per 100L

Waiorohi Stream-Waikato River (Hamilton)-Waikato River (Tuakau)-Oroua River-Turitea Dam-Pareora River-Tautau Stream-Wainuiomata River-Waitakere Dam-Waingawa River-Orongorongo River-Lower Huia Dam-Lake Karapiro-Big Huia River-Ashley River-Whakarewarewa Forest Spring-Seadown Well-NW ChCh Aquifer 1-Hutt River-Hicks Road Spring -

Climate and land use changes

Review

Trends in Parasitology February 2013, Vol. 29, No. 2

Table 2. Influence of environmental changes on Cryptosporidium and Giardia

Expected environmental change	Effect on pathogen survival/transmission ^a	Change in risk ^b
Increasing rainfall	↑ Runoff	+
	↑ Resuspension of oocysts in water courses	+
	↑ Flooding	+
	↑ Contamination of water courses by sewage effluent	+
Increasing livestock intensification	↑ Pathogen sources/reservoirs	+
	↑ Contamination of water courses	+
	↑ Contamination of food sources	+
	↑ Population connectivity	+
	↓ Population connectivity	-
	↑ Ecological connectivity	+
	↓ Ecological connectivity	-

a↑, increase; ↓, decrease.

^b+, increase in disease risk; -, decrease in disease risk.

Lal, Baker, Hales and French 2013