

Water Treatment for Small Supplies – Balancing Risks and Costs

Philip La Roche & Andrew Watson ~ Beca

Craig Freeman ~ Filtec

Introduction

- Small supplies big challenges
- Compliance:
 - Minor supplies (501 5,000) 60% not fully compliant
 - Small (101 500) 70% not fully compliant
- Seven case studies
 - background
 - features
 - challenges and success factors
- Treatment technology
- Treatment challenges

Whirinaki

Background

- Established under Nga Punawai o Hokianga, and completed in 2000
- 64 households, expanded in 2017 to 89
- Community
 - owned and operated (Whirinaki Water Board)
 - work largely by volunteers

- Off grid (micro-hydro and PV)
- Surface water, microfiltration, and UV disinfection
- Original supply designed Cook Costello (plant D&C by Pall)
- Upgrade designed by Board and CH2M Beca

Whirinaki – Challenges and Success Factors

- Biggest challenges
 - remoteness
 - high deprivation
- Membrane filtration
 - high technology
 - copes well with variable raw water quality
- High quality source water
- Community
 - successful operation for 17 years
 - commitment to running supply
 - value is deeper than just safe water

Shannon

Background

- Horowhenua District Council, operated by Downer
- Population of 1,400
- Basic chlorination-only plant
- Surface water, typically 2 4 NTU, but can rise to >100 NTU

Features

- Design by CH2M Beca
- Membrane filtration, pH correction, chlorination, completely automated
- Delivery in two contracts membrane (Pall) and balance of plant (Downer) total of \$2.6 million

Discussion

Membrane well-suited (unattended and simple operation, copes with short high turbidity events)

Shannon - Challenges and Success Factors

- Capital Assistance Programme funding (72%)
- Membrane technology:
 - Unattended operation
 - Good fit for raw water
 - Avoided cost of clarifier

Consistent performance (<0.1 NTU) despite many flood events

Compliance in 15/16 for bacteria but not for protozoa

Tokomaru

Background

- Horowhenua District Council, operated by Downer
- Population of 550
- Surface water, infiltration gallery, chlorination only, history of boil water notices
- Cost of traditional plant of \$2.5 million pushed out by 20 years

- Sand media + carbon media + High Flow cartridge filtration, and UV all containerised
- Turned off when turbidity > 2 NTU
- Trialled at pilot scale for 6 months
- Design by Filtec, implemented 2013-15, cost \$350,000
- Cartridge costs of \$8,000 per year (50% higher last 2 years), carbon cost of \$10,000 in first year

Tokomaru - Challenges and Success Factors

- Risks of extended duration storm events and catchment changes (now adding additional storage)
- Compliance generally maintained, but one boil water notice
- Process solution relies on selective use
- Community now has a treated water supply
- Achieved full compliance for 15/16

Eketahuna

Background

- Tararua District Council
- Population of 440
- Surface water bush catchment in foothills of Tararua Ranges
- Infiltration gallery (average 0.5 NTU)

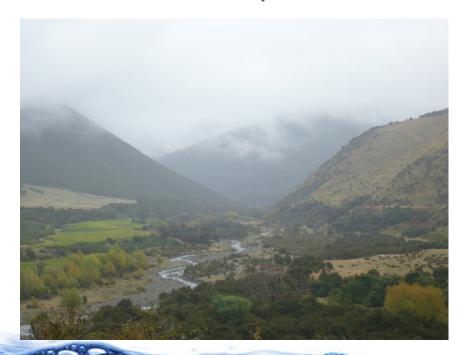
- Selective abstraction (< 2 NTU)
- Macrolite media filtration and UV
- Design by Filtec, implemented in 2011/2012 at a capital cost of \$490,000
- Very low operational costs

Eketahuna - Challenges and Success Factors

- Ensuring everyone understood requirements of DWSNZ
- Low cost treatment solution
- Reliant on good raw water quality

Compliance 15/16 for bacteria but not for protozoa

Seddon


Background

- Marlborough District Council (owner and operator)
- Part of larger Awatere rural water supply scheme
- Population of 840 (seasonal peak)
- Upland stream catchment with infiltration gallery (spikes of up to 80 NTU)

- CH2M Beca preliminary design and client advisor role for D&C delivery
- CAP funding of \$1 million in late 2015
- Specimen design on basis of conventional process but alternatives invited
- Contract awarded to Filtec in late June for \$2.6 million (membrane filtration process)
- Need to hydraulically separate from rural supply

Seddon - Challenges and Success Factors

- Convincing community of health risks of un-treated supply
- Rural supply will remain un-treated point of entry being considered
- Membrane-based process favoured over conventional

Little River

Background

- Christchurch City Council owner, City Care operated
- Population of 240
- Surface water source from creek (3 log), slow sand filtration and chlorination
- Insufficient catchment yield and non-compliant (filtered water spikes > 1 NTU)

- New well drilled elevated hardness (up to 320 mg/L) and salinity
- Treatment plant upgrading (CH2M Beca design) softening of groundwater, slow sand filter refurbishment and UV
- Total cost of \$2 million

Little River - Challenges and Success Factors

- Increased complexity of treatment from softening
- Blending of surface water and groundwater:
 - improved resilience
 - counters water quality negatives of each source
- Compliance in 15/16 for bacteria but not for protozoa

Kaeo

- FNDC → private ownership in 2001 → Wai Care Environmental Consultants
- Population of 72 in 27 households
- Shallow well, high iron, Deferum iron removal plant (CAP funded in 2011)
- Poor treated water quality, not financially sustainable
- Unsuccessfully applied for CAP funding in 2015 with two options
 - Upgrading existing plant \$200,000
 - Implement new groundwater source and expanding the supply \$750,000
- Early 2016 media attention idea of upgrading school supply to serve community
- Lesson need to implement simple robust solutions, which can be challenging for poor quality sources

Treatment Technologies (1 of 2)

- Media filtration + cartridges + UV
 - Small supplies
 - Effective where water quality is good (< 2 5 NTU)
 - Risks if use selective abstraction and/or source water deteriorates
 - Simple and low cost
- Coagulation (+ clarification) + media filtration
 - Difficulty of coagulation control under varying raw water quality
 - Similar cost to membrane filtration for small plants
 - Other factors can favour membranes
 - Level of attendance
 - Experience required

Treatment Technologies (2 of 2)

Membrane filtration

- Consistent high quality water even under varying raw water quality
- More technically complex, but can be sustainably operated in small remote supplies
- Greater certainty of compliance
- Availability of pre-engineered small plants
- Significant part of future

Conclusions - Non-technology Factors

- Costs for small supplies can be 4 x or greater higher than main metropolitan areas
- Economically disadvantaged
- Small supplies are unaffordable if costs are ring-fenced
- Small supplies only affordable if:
 - costs are harmonised across a large customer base
 - community run supplies

Conclusions - Technology Factors

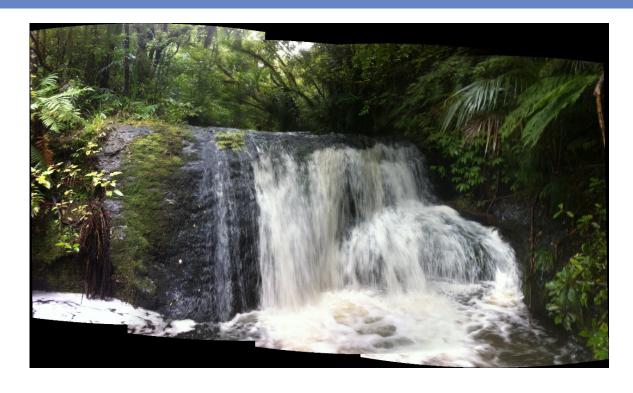
Cartridge filtration and UV disinfection

- Effective where water quality is good (< 2 5 NTU)
- Not suitable for higher turbidity sources
- Simple and low cost

Membrane filtration

- High quality and more robust level of treatment
- Compliance more assured under varying raw water quality
- More complex technology but proven for small remote supplies
- Pre-engineering is improving economics and operability

Coagulation/Clarification/Filtration


- Greater level of optimisation required under varying raw water quality
- Still more economic for large plants but less so at small scale

Conclusions – Decision Matrix

Source Water Quality	Best Match Treatment Process			
	Risk Profile		Operational Capability	
	Higher	Lower	High	Low
Very High Quality < 2 NTU, <5 TCU	Cartridge + UV	Media Filtration + Cartridge + UV	Cartridge + UV	Cartridge + UV
High Quality < 2 – 4 NTU	Media Filtration + Cartridge + UV	Direct Filtration Membrane Filtration	Direct Filtration	Media Filtration + Cartridge + UV
Good Quality < 10 NTU, < 20 TCU	Direct Filtration	Conventional Membrane Filtration Direct Filtration + UV	Direct Filtration	Membrane Filtration
Poor Quality > 100 NTU, > 50 TCU	Conventional	Membrane Filtration	Conventional Membrane Filtration	Membrane Filtration

Questions

Andrew Watson

E: Andrew.watson@beca.com

M: +64 21 797 210

Client Acknowledgments: Whirinaki Water Board, Wai Care Environmental, Horowhenua DC, Tararua DC, Marlborough DC, Christchurch CC

