Are we (you!) getting carried away?

Planning and modelling affordability and more

My presentation

My background

How I have experienced modelling

- & How to model changes in land-use?
- Models and Water Sensitive Design
- & Modelling affordability.
- Need for top down approach
- Models one off or operational?
- & Credibility and standardisation

Heijs Consulting

Improving Water Management Practices and Outcomes

Heijs Consulting

Improving Water Management Practices and Outcome

My work carreer

& In NL with Water Authorities

- \approx Effects of largely combined sewer systems on water quality
- \approx Quantity and quality modelling
- \approx Helped setting standards

💩 In NZ

Improving Water Management Practices and Outcome

Heijs Consulting

- \approx Strategic Wastewater Planning (project CARE)
- \approx Strategic Stormwater Planning
- \approx Stormwater and Landuse
 - Long Bay structure plan, other plan changes, Unitary Plan, etc
- \approx Input into strategic documents
 - Auckland Plan, growth strategies, etc

mproving Water Management Practices and Outcome How I have experienced modelling Ø QA/Check by client \approx Often engineer – common sense / order of magnitude • No real check of model setup and all the dials ≈ Model peer review by modeller Appears to be very worth while. Finding many issues/errors -> sometimes significant implications ≈ Calibration / verification Reliable representation of actual behaviour Looking at / using the outputs (not how they have been calculated) Testing options / what if's / design ≈ Options - relative differences ✓ Sensitivity runs ≈ Design – absolute outcomes ? • But how accurate / reliable is a model? (and the assumptions?) How much safety margin (compared to traditional conservative calcs) are we giving away? & Communication tool Heijs Consulting ≈ Complex -> simple (challenge for most modellers)

Used to support legal challenges

≈ Hearing / Environment court.

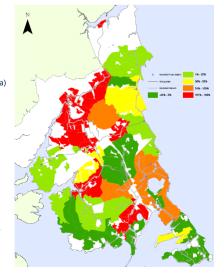
Improving Water Management Practices and Outcome How to model changes in land use?

Ø Planners 'change' their mind all the time

- ≈ District Plan = 10 years
 - Auckland Unitary Plan 40 years but will be revised many times
- Assets last 100*** yrs and represent huge investment
 - often one opportunity to do it well very expensive/impossible to fix later (in build up area)

Intensification

- ≈ Permissive (Unitary Plan) not controlled no nothing about uptake (location, timing)
- ≈ Can't predict (?)


Infrastructure Planner

- ≈ Conservative / Pre-cautionary (not all of us)
- ≈ on the safe side
- ≈ → MPD'ish good idea ?

Ø Demand predictions

Heijs Consulting

- $\approx~$ the smaller the scale the larger the potential error
- ≈ Wastewater and water supply | not stormwater

Models and Water Sensitive Design

& Can you model an sponge?

- Water Sensitive (Urban) Design (wsud) or Low Impact Design (LID)
 - ≈ Largely about mimicking nature
 - Quantity and quality
 - ≈ Current generation of hydraulic models
 - For design event flooding / conveyance
 - From 'engineered solutions' to mimicking nature solutions
 - Modellers always argue that LID doesn't work (for a 100 yr storm) really?
 - But a sponge has to work better
 - · But we see examples all over the world that un-sponging has severe implications
 - ≈ Current need to also consider smaller, everyday storm
 - ≈ Lots of talk little operational / useful

Not just hydraulics

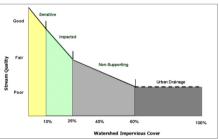
≈ LID is there (mainly) for water quality reasons!

Ø Other models?

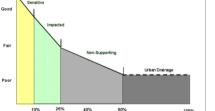
mproving Water Management Practices and Outcome

Heijs Consulting

Improving Water Management Practices and Outcome


Heijs Consulting

- ≈ Purrs, wuffs, music, impervious cover model
- \approx Deterministic or stochastic (complexity ~ stochastic?)
- \approx To include "water quality" or allow for subsequent water quality assessments


Impervious Cover Model – potential?

Example Stochastic model

- Based on catchment characteristics and receiving water quality observations
- Simple spreadsheet. \approx Using impervious (+), compaction (+), mitigation (-)

- Used and accepted on Long Bay by Environment court (as a logic, not the absolute outcomes)
- Requires operationalization for urban (and rural) NZ
- Who is up for the challenge?
 - \approx Nice research project

Modelling affordability Meeting the clients needs

💩 Trend

mproving Water Management Practices and Outcome

Heijs Consulting

mproving Water Management Practices and Outcome

Heijs Consulting

- ≈ more detailed more sophisticated more expensive
- \approx Consent requirement need detailed models for everything

Affordability

- \approx Many councils cannot afford detailed CMP's and detailed Models
- ≈ Managers (that don't understand?) demand quick and dirty
 - Inconvenient
 - More reactive planning \rightarrow risk of sub optimal solutions.
 - Can we assess the (often long term) risks of not doing it properly (=our way)

& Challenge:

- \approx Come up with an approach that is affordable
- \approx High level (back of envelope) to provide big picture and high priority issues
- ≈ Detailed only where needed
- There are disadvantages (eg not operational in all location)
- $\approx~$ Anyone ever did a cost benefit analyses? Where is the balance
 - CARE \$2m → \$230 million programme (x%) and saved ###
 - Catchment \rightarrow \$200k-\$400k incl gauging \rightarrow programmes \$5m \$30m and more (y-z%)
- $\approx~$ Can we model conservatively (at a crude scale)?
- \approx Maybe develop some 'horses-for-courses' NZ guideline

Need a top down approach

& Help zooming into problem areas

& What tools do we need?

- \approx Can GIS be part of this?
 - Can we do basic analyses using GIS platform
 - Good example is overland flow.
 - Parts of catchments that have 'over capacity' because of minimum diameter
 - Can we use GIS algorithms to do some of the work
- \approx Rapid flood assessment another example
- \approx What other tools?

Models a one-off or operational?

Build it once – use it once and forget about it

- \approx Technology change need to rebuild anyway because of changes in software
- \approx Technical life 5-10 years?
- $\approx\,$ So don't bother keeping up to date?

& Operational – keep up to date

- $\approx\,$ Ability to respond quickly to planning demand (eg requests for info, scoping of a project
- \approx (how?) expensive

mproving Water Management Practices and Outcome

Heijs Consulting

Improving Water Management Practices and Outcomes

Heijs Consulting

≈ Probably many need this for performance reporting (consent requirement) – at what detail??

Modelling environment

- \approx Huge investment (model) assets
- \approx Needs an asset management approach

Efficiencies / stream lining / best practice – horses for courses

Legal disputes costly and frustrating

\approx Credibility

- For managers / hearing commissioners / environment court
- Modellers disagreeing not good for credibilty
- Need consensus on methodologies : NZ standards / Accreditation?

Agree on specifications and methods

- \approx Nation wide
- \approx All subscribe to code of conduct
- \approx Horses for courses

15/07/2014

Thank you time for discussion

