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ABSTRACT 
Aquatic microbiological surveys in streams draining intensively farmed catchments can, during flood events, 
indicate differential time-concentration patterns between a bacterial health-risk indicator (E. coli) and a major 
zoonotic bacterial pathogen that it seeks to indicate—Campylobacter. For example, the indicator's peak 
concentration at a monitoring station can arrive ahead of the flood peak (i.e., the pollutograph leads the 
hydrograph), whereas the peak pathogen concentration arrives with the flood peak (in which case the 
pollutograph and hydrograph peaks coincide). Observations for other bacteria have indicated cases where the E. 
coli pollutograph lags the hydrograph. These observations have generated the hypothesis that such behaviour 
reflects the possibility of there being three different possible (predominant) sources of pathogens in the 
floodwater: (i) by sediment entrainment, (ii) via local land runoff, or (iii) from upstream releases (e.g., from 
dams, inflows, or upstream floods). A general theory for contaminants in idealized stream floods has been 
developed, considering all three sources, based on kinematic wave theory. It can explain the observed 
differential time-concentration patterns. The calculation procedures and associated results are intended to inform 
public policy, by identifying predominant pathogen sources and therefore helping to focus attention on the 
important delivery mechanisms. This will better inform quantitative health risk assessments for downstream 
water users (recreational uses, water supplies, food production and processing industries). 
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1. INTRODUCTION 
Consider two local mechanisms of microbial (bacterial) transport through stream systems during rainfall. Firstly, 
rain water flowing overland toward stream banks can entrain bacteria from previously deposited faecal material 
(Nagels et al. 2002, Muirhead et al. 2004). It seems that this is generally occurs. Secondly, enhanced stream 
velocity during floods drives entrainment of any faecal material in the stream sediments and on its banks. This 
seems not to generally occur, at least in the case of the troublesome bacterium Campylobacter, an important 
zoonotic pathogen.1 This is because the sediments may be depauperate in the pathogen yet rich in its E. coli 
indicator, as has been found in sediment surveys in a Waikato stream draining intensive pastoral agriculture 
(Snowshill 2007).2  

This observation provides the motivation for studying the differential timing of peaks of Campylobacter versus 
E. coli during storm flood events, as shown in Figure 1, using kinematic waves. 

 

                                                      
1 This pathogen is of considerable public concern, given the high rate of reporting of its zoonosis—campylobacteriosis. 
This disease has been reported at up to 400 cases per 100,000 persons per annum (Till & McBride 2004). It is the subject of 
a major modelling research effort (Lake et al. 2007), which has funded much of the work reported herein. Animals are its 
major “reservoir”, and so identifying effective intervention strategies to minimise its transmission to humans includes 
consideration of its transport characteristics over land and in freshwater streams.  
2 This result was actually predicted by Donnison et al. (2006). 



 

   

Figure 1:Concentrations of E. coli (Colilert®) and Campylobacter (MPN) measured on autosamples taken  
over a flood event in the Toenepi Stream, Waikato in September 2005, along with flow  

and turbidity. Peak microbial concentrations are annotated by ovals.  
Data: Donnison et al. 2006, Lydiard & Davies-Colley 2006 
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The appropriateness of kinematic wave theory, at least for smaller steeper streams, has been endorsed by Li et al. 
1975 and by Krein & De Sutter 2001) who observed that “there is a lag in the arrival of the flood water behind 
the rise in stage”. Its huge advantage, as we shall see, is to replace a complex momentum balance with a simple 
power law. 

More generally, other observations (pers. comm. Dr Rob Davies-Colley, NIWA, Hamilton) have shown that a 
microbial stream "pollutograph" can lag, lead or be in harmony with the stream's hydrograph. 

 

2. CONCEPTUAL MODEL 
Following a speculation made by Wilkinson et al. (2006), we seek to mimic such differential peak timing 
behaviour using a mathematical model based on kinematic wave theory, described in some detail by McBride & 
Mittinty 2007. The development was assisted by a clear exposition of the possible use of kinematic waves for 
contaminant hydrology by Chapra (1997). It has three main equations, for: (i) flow hydraulics, (ii) concentration 
of bacteria in the stream sediments, and (iii) concentration of bacteria in the stream water. We do so for an 
idealized situation in which we consider a stream segment with a dam as its upstream boundary, so that its 
upstream boundary flow (Qb) is constant, even during rainfall. Our interest lies in monitoring and predicting the 
pollutograph at a downstream monitoring station. 

Rainfall commences at time zero, giving rise to a uniform rate of lateral inflow along the stream length, in which 
there is no tributary inflow. At the end of the event the lateral inflow ceases abruptly. Concentrations of bacteria 
in the lateral inflow can vary with time. There is a known concentration of bacteria in the sediments at the start 
of the event.  

Major assumptions concerning mechanisms operating are as follows.  



 

   

2.1 ASSUMPTIONS ABOUT LATERAL INFLOW 
The first runoff flush can be expected to result from higher bacteria entrainment rates than later in the storm, as 
stores become depleted. However, the lateral land distance over which the former entrainment has occurred will 
be smaller than that occurring later in the storm when the entrainment rate at a point is lower, but the distance 
over which entrainment occurs is longer—compensating for the higher point-wise entrainment rate. Accordingly, 
during the constant overland flow period the delivery of bacteria to the stream could possibly be taken as zero-
order (constant) during the runoff period; that is, 

ll rCM =  (1) 

where Ml [# T–1 L–1] is the land-derived bacteria delivery rate per unit channel length (“#” denotes numbers of 
bacteria), r [L2 T–1] (a constant) is the overland flow rate per unit channel length, and Cl [# L–3] is the 
concentration of bacteria in the lateral inflow.  

2.2 ASSUMPTIONS ABOUT ENTRAINMENT 
We assume that the finiteness of the sediment microbial store demands that the bacterial entrainment rate is first-
order and proportional to the remaining store after entrainment has commenced. Also, following Valentine & 
Wood (1979) (see also Rutherford 1994), that rate is taken to be proportional to the floodflow velocity excess, 
that is, 
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where Ms [# T–1 L–1] is the delivery rate of entrained bacteria per unit channel length, es [T–1] is the stream 
entrainment coefficient, U [L T–1] is the cross-section average flow velocity (with value Ub at baseflow, from the 
dam outlet), and S [# L–1] is the store of bacteria in the stream sediments and banks per unit channel length. 
Entrainment occurs when U > Ub but there is deposition when U < Ub, as seems reasonable. 

2.3 WHY ANALYSE SUCH A SIMPLE CASE? 
We advance three reasons.  

Firstly, this approach involves a novel application of kinematic wave theory—its application to surface water 
contamination is rare (Singh 2002). It therefore seems prudent to examine such a simple case, to help identify 
any problems in mathematical formulation of the problem and the use of associated equation solution techniques. 

Secondly, the equation solution procedures generally require the use of approximate numerical methods, because 
analytical solutions have not been found. This makes "benchmarking" of the solution procedure difficult. 
However, we have obtained an analytical solution for one simple case (lateral inflow to a wide channel with 
positive baseflow, as summarised in the Appendix), which provides for some concrete benchmarking. 

Finally, simple cases such as proposed can actually provide more general insight into contaminant hydrology 
than is the case for much more elaborate models, which tend to focus on particular cases. 

2.4 SOLVING THE EQUATIONS 
In the initial formulation of the problem by McBride & Mittinty (2007), and following Chapra (1997), an 
explicit numerical scheme was used. This has the advantage of relative simplicity (compared with an implicit 
scheme), but also has a drawback in that it isn't fully mass-conserving, and introduces "numerical dispersion" in 
which waves tend to be artificially smeared out. The mathematics of rather more elaborate implicit numerical 
schemes has been developed, and is in the process of implementation. This has been based on the attractive 
"four-point Preissman" scheme (Liggett & Cunge 1975, Abbott & Basco 1989, Martin & McCutcheon 1999). Its 
main attraction is that its computational molecule doesn't involve any nodes outside a particular grid cell which, 
on physical grounds, is only needed in the presence of second-order diffusion terms.  

Herein, we mostly repeat the explicit approach taken in McBride & Mittinty (2007).  

The algorithms were developed in Microsoft Excel-Visual Basic. 

 



 

   

3. TRANSPORT EQUATIONS 
Here we essentially repeat the development reported by McBride & Mittinty (2007), extending the model to 
include bacterial inactivation (which occurs principally by UV radiation). 

3.1 CONTINUITY (WATER BALANCE) EQUATION  
Application of mass conservation principles leads to the well-known equation 

r
x
Q

t
A

=
∂
∂

+
∂
∂  (3) 

where A [L2] is the stream cross-section area, Q [L3 T–1] is the stream discharge (with baseflow value Qb, at the 
dam), x [L] is distance along the channel, and t [T] is time since flood commencement—r has been defined 
above. Each term in Eq. (3) has units [L2 T–1]. 

Following Chapra (1997), we adopt the key assumption of kinematic wave theory—that the discharge is a 
function of depth alone—and use the Manning equation3 

θ
ρ

= 32

35

P
A

n
Q  (4) 

where θ [dimensionless] is the channel slope, P [L] is the wetted perimeter, n [dimensionless] is the Manning 
roughness coefficient and ρ is the units adjustment factor.4 This equation can be solved for the fundamental 
kinematic wave equation (which obviates the need to develop a much more complex momentum balance 
equation) 

βα= QA  (5) 
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demonstrating that α is variable, not constant (because the wetted perimeter changes with discharge). However, 
the value of α becomes nearly constant for a rectangular channel much wider than it is deep—because we then 
have P ≈ B0, where B0 [L] is the channel width. The value of α is then 
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Differentiating Eq. (5) with respect to time and substituting the result into Eq. (3) we have the kinematic wave 
equation (Chapra 1997) augmented by lateral inflow 
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By substituting explicit forward-time/backward-space differences, Eq. (8) can be represented by the approximate 
difference equation 
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3 According to Henderson (1966), Flamant (in 1891) wrongly attributed this equation to Manning. He noted that it was 
derived by Gauckler in 1868 and Hagen in 1881. In Europe the equation is often known as the Gauckler-Strickler equation, 
or just Strickler equation, although Strickler's contribution was made in the 1920s! 
4 The value of n is calibrated such that the numerical value of ρ is 1 in metres-second units (i.e., ρ ≡ 1 m1/3 s–1). In contrast, 
were we to use the similarly popular Chézy resistance equation (in which case β = 2/3), the value of ρ is 1 in feet-second 
units (i.e., ρ ≡ 1 ft1/2 s–1). Chow (1959, sec. 5-4) notes that even though a French engineer (Chézy) developed this equation 
(in 1769) it has become customary to report it in English units. 



 

   

where, for example, ( )tnxiQQn
i ∆∆= , , etc., such that i = 1, 2,… imax and n = 0, 1, 2,… nmax (i counts downstream 

distance steps; n counts time steps). This can be simply solved for the unknown stream discharge 
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in which 

αβ
=

β−1QU c  (11) 

is the celerity of the kinematic wave [L T–1]. This is always greater than the cross-section average velocity of the 
stream water (Chapra 1997), defined by U = Q/A. 

3.2 SEDIMENT BACTERIA EQUATION 
We assume that the bacteria (and sediment) in the stream bed do not move downstream whilst in the bed, but can 
be entrained into the water column and so be convected downstream in the water (so there is no ∂/∂x term). In 
that case we simply have 
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where all variables are as defined earlier. Each term in Eq. (12) has units [# L–1 T–1]. Using backward-time 
differencing for the temporal derivative, the approximating difference equation is 
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The initial density of bacteria in the bed, S0 [# L–1], is taken to be constant down the channel. For input to the 
model we typically have data for the number of bacteria per unit area of stream bed (s). This is simply related to 
the S variable by S = sB0.  

3.3 AQUATIC BACTERIA EQUATION 
From mass conservation principles we obtain 
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where C(x, t) [# L3] is the concentration of bacteria in the stream water and k is the bacteria inactivation 
coefficient—omitted from the McBride & Mittinty (2007) formulation. All other variables have already been 
defined. Each term in Eq. (14) has units [# L–1 T–1]. Using backward-time differencing for the temporal 
derivative and defining a segment volume as V = A∆x, the approximating difference equation is 
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Now, noting that the lateral inflow adds a volume of r∆x∆t to each segment during each time step, we can write 
the term ( ) 1+n

iVC  as 
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Substitution into Eq. (15) gives 
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The numerator represents the mass in the segment i at the previous time step, while the denominator represents 
its volume. 
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4 INDICATIVE RESULTS  
All results shown are direct copies of graphs produced within the Visual Basic environment, with dynamic 
headers echoing key input values.  They are intended to be indicative only, as this is a work-in-progress. 

In Figure 2 we show predictions of the downstream hydrograph for both Cases I and II (as defined in the 
Appendix). Case I occurs when the inflow duration (t0) exceeds the catchment's "time of concentration" (ts), and 
vice versa for Case II.5 

 
Figure 2: Predictions of stream discharge for Cases I and II 6using both explicit and implicit schemes, and 

comparing wide channel solutions with the analytical solution 
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CASE = II: t0 = 2 h, ts = 7.95 h; L = 15 km, Dx = 500 m, Dt = 600 
s,  r = 0.05 L/s/m; omega = 1
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In Figure 3 we show predictions of the downstream hydrograph Campylobacter versus E. coli. In the former 
there is no sediment store ("s0" is the initial number of bacteria per unit area of sediment), but a constant 
concentration of Campylobacter in the lateral inflow (500 per 100 mL). In the latter case, there is both a lateral 
inflow concentration of E. coli and a substantial sediment concentration of that indicator. 

 
Figure 3: Predicting differential timing of peaks of Campylobacter and E. coli concentrations, ignoring 

inactivation and using the explicit scheme. 
 

 
 

                                                      
5 As defined in the Appendix, ts is the instant at which the stream discharge at the monitoring site first reaches its maximum 
possible value (for the given lateral inflow rate). In Case I (t0 > ts) the discharge remains at that value until the inflow ceases 
(at time t0). In Case II (t0 < ts) the discharge remains at the value it attained at time t0 for a subsequent time which we call 
the "recession overhang". That constant discharge value is always less than the maximum attained for Case I. 
6 "Omega" (ω) is the time-weight used in the four-point implicit scheme. 
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Figure 4: Predicting differential timing of peaks of Campylobacter and E. coli concentrations  
in the presence of inactivation, using the explicit scheme: 

k (per day) = 50 (Campylobacter ), 10 (E. coli). 
 

 
 
 

5. DISCUSSION AND CONCLUSION 
The results in Figure 2 show that for the wide channel, the results predicted by both the explicit and implicit 
schemes agree well with the analytical solution. In fact the degree of agreement between the explicit and implicit 
schemes is surprising. However, mass conservation is not completely satisfactory for these calculations (there is 
a <0.5% error, and it should be smaller), a matter that awaits possible resolution. 

Figure 3 demonstrates that the differential timing of peaks of Campylobacter and E. coli are able to be predicted 
by the model, merely by switching a sediment store off (for Campylobacter) and on (for E. coli). Figure 4 
indicates that the same feature is predicted to occur even in the presence of (substantial) inactivation—field and 
laboratory studies show that the inactivation of Campylobacter under solar radiation is much faster than the 
equivalent rate for E. coli (Obiri-Danso et al. 2001, Sinton et al. 2007a&b). 

This analysis indicates that Campylobacter may enter streams through storm runoff, rather than via sediment 
entrainment, and this could have important practical implications for the choice of effective Best Management 
Practices (BMPs) on farms, a topic of increasing interest in New Zealand—Collins et al. (2007), Lake et al. 
(2007), McBride & Chapra (in prep.). These results demonstrate the potential for simultaneous monitoring of 
indictors and pathogens, and associated kinematic wave modeling, to provide more informed understanding of 
the sources of the microbes that we are most interested in, yet seldom measure—the pathogens. Furthermore, the 
rapidly evolving field of microbial source tracking should provide even more discrimination on the differential 
infectivity pathogens according to their source. For example, Campylobacter from wild birds may be much less 
infective to humans than those originating from poultry, ruminant or human sources (French 2008). 
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NOMENCLATURE 

Term§ Meaning Generic units†,¶ 

α Proportionality factor in the fundamental kinematic wave equation, A = αQβ L2–3β Tβ 
β Exponent in the kinematic wave equation, A = αQβ (β = 3/5 for Manning equation) – 

θ Channel bed slope – 

µ Relative stream water velocity excess, µ = (U – Ub)/U  – 

ρ Units conversion factor in Manning equation, Q = ρ[A5/3θ1/2/(nP2/3)]  L2–1/β T–1 
A Stream cross-section area L2 
B0 Stream width L 
C Bacteria concentration in the stream water # L–3 
Cl Bacteria concentration in the lateral inflow # L–3 
es Stream sediment entrainment coefficient T–1 
i Distance counter for numerical scheme: x = i∆x – 
k Bacteria inactivation coefficient T–1 
L Stream length from dam to downstream boundary L 
Ml Delivery rate of land-derived bacteria per unit channel length # T–1 L–1 
Ms Delivery rate of entrained bacteria per unit channel length # T–1 L–1 
n Manning's "n", a resistance coefficient; also time step counter, t = n∆t – 
P Stream channel wetted perimeter L 
Q Stream rate of flow ("discharge") L3 T–1 
Qb Stream discharge at baseflow L3 T–1 
Qmax,I Maximum stream discharge at downstream boundary for Case I (see Appendix) L3 T–1 
Qmax,II Maximum stream discharge at downstream boundary for Case II (see Appendix) L3 T–1 
r Lateral inflow rate per unit channel length L2 T–1 
S Store of sediments in stream sediments per unit channel length # L–1 
s Store of sediments in stream sediments per unit bed area # L–2 
t Time since commencement of lateral inflow T 
t0 Duration of lateral inflow T 
ts Time of concentration, so that Q = Qmax,I for t = ts ≤ t0 (see Appendix)  T 
tp Recession overhang for Case II (see Appendix) T 
tII Time at which Case II steady-state ceases (see Appendix) T 
t0s Time to (instantaneous) flood peak when t0 = ts (see Appendix) T 
U Cross-section-average water flow velocity L T–1 
Ub Cross-section-average water flow velocity at baseflow L T–1 
Uc Kinematic wave celerity L T–1 
V Steam segment volume, V = A∆x L3 

X Distance along the channel from the dam L 
§ The lateral inflow term "r" is "q" in McBride & Mittinty (2007). The change has been made to avoid programming difficulties. 
† "#" denotes numbers of bacteria; "L" denotes length; "T" denotes time. 
¶ The particular choice of units made must be such as to ensure dimensional consistency in the governing equations and in the associated 

computer code. 



 

   

APPENDIX: ANALYTICAL FLOW SOLUTIONS FOR A WIDE CHANNEL 
WITH POSITIVE BASEFLOW 

Henderson & Wooding (1964) developed an elegant analytical solution for an overland flow kinematic wave 
arising from steady rainfall of finite duration, given zero initial depth (see also Streeter 1966). This solution can 
be extended to the case of a lateral inflow of finite duration to a wide channel with positive baseflow (McBride, 
2009 in prep.), providing an excellent "benchmark" for associated numerical solutions—at least for the flow 
component in a wide channel. The key equation is Eq. (5), i.e., A = αQβ (with terms as defined previously). 

First we must first define two key time periods: the duration of lateral inflow (t0), and the time (ts) at which a 
steady-state maximum flow is reached at the downstream boundary (at x = L). This time is also commonly called 
the catchment "time of concentration" (e.g., Eagelson 1970). It may be calculated as: 

( )[ ]ββ −+
α

= bbs QQrL
r

t  (A.1) 

where L is the length of the stream segment (from the dam to the downstream boundary), and all other terms are 
as defined previously (and are also listed in the immediately preceding Nomenclature section). 

Following Henderson & Wooding (1964) we then define two cases—"Case I" and "Case II"—according to 
whether or not the lateral inflow duration exceeds the time of concentration (i.e., t0 > ts or t0 < ts). Their 
associated water surface profiles are depicted on Figure A.1. In Case I, the profile A'DC will be attained after a 
time ts. This will be maintained, with constant depth BC at the point B, until lateral inflow ceases (at the later 
time t0). In Case II a water surface profile such A'DE will apply at time t0, in which a plateau extends some way 
upstream of B with constant depth BE (less than BC). This depth will be maintained at B for some time after 
lateral inflow ceases, until a time tII, which we can calculate. This time increment (tp = tII – t0) we call the 
"recession overhang".  

Figure A.1: Water surface profiles during the buildup and steady-state phases 
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The analytical solutions for stream discharge are as follows: 

Case I (t0 > ts): ( )
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where ( )αβ= β−1
, bbc QU  is the celerity of the kinematic wave at baseflow (a known quantity), and 

Case II (t0 ≤ ts): ( )
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 (A.3) 

In each case the recession discharges (Qrec,I & Qrec,II) are solutions of f(Q) = L – [(Q – Qb)/r + Uc(t – t0)] = 0, 
which is implicit in Q (because Uc ∝ Q1–β). This equation can be readily solved, to high accuracy, using the 
standard Newton-Raphson iterative method.  

The time variable tII in (A.3) is defined (for Case II only) as follows:  

tII = t0 + tp is the last time for which the flow at B remains constant (= Qmax,II) 

where 

tp = β(t0s – t0)  is the afore-mentioned recession overhang, and  

( ) rQQQt bs
β−β −α= 1

IImax,Imax,0  is the time to the (instantaneous) peak discharge that occurs when the lateral 
inflow duration equals the time of concentration (i.e., t0 = ts), in which case 
Cases I and II coincide. 


