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ABSTRACT 

How much influence does climate have on water demands? Are water restrictions successful at reducing peak 

demands during dry summers? This paper will discuss answers to these questions through presentation of 

climate correction modelling results from New Zealand water suppliers. 

It is well known that demand per capita varies significantly across the country and this will be due to a wide 

range of drivers such as household income, property size, industrial demand, and weather influences. The 

influence of climate is a significant factor in New Zealand’s municipal water demands, particularly in areas with 

high garden watering. Hotter and drier summers than normal usually result in higher peak day demands which 

are often managed through water restrictions. 

This paper will present findings from statistical regression analysis of municipal water demands and climate 

influences using the Water Demand Trends Tracking and Climate Correction Tool. This Excel-based statistical 

model calibrates demand with climate parameters (e.g. soil moisture index, rainfall and maximum temperature) 

to identify the influence of climate on demand. The model also calculates the climate-corrected demand which is 

the demand that would have occurred under normal climate conditions. The tool enables the user to plot and 

compare predicted demand with actual demand to see if the latter was different. The tool identifies the 

underlying demand trend without the influence of climate and can assist with analysing the impact of water 

restrictions and other demand management measures. 

Climate corrected demand analysis enables water suppliers to more accurately forecast baseline water demands 

and have a better understanding of the underlying demand trends and potential demand drivers. These methods 

will also assist water suppliers to prepare water demand forecasts that meet the recommendations set out by the 

Office of the Auditor General 2010 report: “Planning to meet the forecast demand for drinking water”. 
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1 INTRODUCTION 

Recent dry summers and increasing pressures on our fresh water sources have brought water supply and demand 

issues to the forefront in New Zealand. Over-allocation of water source catchments has raised awareness that 

fresh water may not be as limitless and plentiful as previously perceived. 

As water suppliers increase demand management programmes and introduce water restrictions to curb peak day 

demand, there is a need to understand and potentially quantify the impact of these initiatives on water demands. 

A wide range of drivers have the potential to impact water demands, as shown in Figure 1. Improved 

understanding of the factors influencing demand allows more accurate demand forecasts and appreciation of the 

historic and future trends in water use. 



 

Figure 1: Water demand drivers 

Climate influences can have a significant impact on water demands, particularly in New Zealand cities with high 

garden watering and seasonal outdoor use.   

MWH have developed an in-house software Water Demand Trend Tracking and Climate Correction package 

called WaterTrac which is used to monitor trends in bulk water production.  There are two versions of 

WaterTrac, a daily model and a monthly model. This software is designed to provide water utilities with 

information about climate influences on water demands and underlying trends in water demands after climate 

correction.  

The purpose of the WaterTrac model is to provide information that will enable water suppliers to answer 

questions like: 

1. “I have to prepare forecasts of future water demand but I have been told that the last few years were 

cool with higher than average rainfall.  What correction to the historical records do I need to make?” 

2. “We have had pay for use pricing in place for a number of years now, but demands seem to be trending 

up again.  Is this a “rebound” effect or have the last few years just been hot and dry?” 

3. “Last year we ran a community education campaign.  What impact on water production did it have?” 

4. “I am trying to determine the safe yield of my existing headworks using computer simulation.  What 

equation can I use to predict demands?” 

WaterTrac is operated in the MS Excel spreadsheet environment for data input and output, but is hard-coded in 

Visual Basic and does not need to rely on MS Excel for the complex calculations required. 

2 MODELLING BACKGROUND 

2.1 REGRESSION ANALYSIS 

WaterTrac uses a non-linear multi-variable regression analysis approach to explain the day to day climate 

influences on water demands.  The non-linear regression analysis approach is unique as many other water 

demand regression analysis models assume a linear regression analysis.  



The advantages of using a non-linear transformation are illustrated in Figure 2 below, which shows typical 

linear and non-linear responses to four common climate variables.  If we take the example of rainfall, while it 

has a significant impact on soil moisture and hence demand, it has a very minor impact in its own right.  

Typically, small amounts of rainfall have an immediate damping effect on demand, with additional rainfall 

having little or no effect.  Hence the use of rainfall in its linear (untransformed) form will result in an under-

prediction of rainfall impacts at low levels of rainfall, and an over-prediction of impacts at high rainfall levels. 
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Figure 2: Typical Linear and Non-Linear Demand Responses 

Model outputs include: 

 Regression calibration statistics. 

 The long-term hindcast of calibrated model demands and flows through the full climate record. 

 Climate corrected demands (including upper and lower 95% confidence intervals in the daily model). 

 Historical peak to climate corrected average demands. 

Once the climate influence has been established the influence of other demand drivers can be assessed, such as: 

 water restrictions 

 demand management programs 

 water pricing changes. 

2.2 DATA REQUIRED 

The following raw input data is required to run WaterTrac: 

1. Daily readings of maximum temperature, rainfall and potential evapotranspiration (24-hour Penman 

potential evapotranspiration) from NIWA. The full historical record for the closest weather station. 



2. Daily or monthly bulk water production data corrected for reservoir fluctuations. At least three years of 

data required. 

3. Annual estimates of the population served by the water supply. 

2.3 THE CLIMATE CORRECTION PROCESS 

The process of climate correction in the WaterTrac model can be summarised as follows: 

1. The soil moisture index parameters are derived from the input climate data (antecedent rainfall and 

evaporation). It is included as one of four climate independent variables.  

2. A regression model is progressively calibrated using the four climate variables and recognised statistical 

techniques. The calibration is undertaken over a period of relatively ‘normal’ water consumption 

(e.g. free of enforced water restrictions) with a good range of climatic conditions. 

3. A ‘hindcast’ is created which uses the calibrated model to predict water production over the climate 

record. This provides long term modelled demand responses to climate drivers. It also allows 

verification of the long term stability of the model. 

4. Consideration of the long term average and predicted average for the trend tracking period are used to 

create a climate corrected trend of water production. The 365 day/12 month rolling average trends 

for observed per capita production versus climate corrected water per capita production are plotted. 

The WaterTrac model adopts a simple soil moisture store model as a climate variable in the regression analysis.  

The soil moisture index is used to model the antecedent soil moisture effects on demand or flow.  This particular 

soil moisture store model has been found to generate high correlations with water demand or flow in many 

separate applications. The soil moisture index equation is discussed in detail in Section 2.4. 

The soil moisture index model allows the observed evaporation data to be raised to some power. The exponent 

can be entered by the user or the software can be used to search for the optimal value as part of the soil moisture 

index calibration exercise (the latter is the default in the model).  Empirical experience in a number of studies 

has found that an evaporation power greater than 2.0 will give optimal results for water demand modelling.   

The calibration period for the regression model sets the baseline for the comparative trend tracking.  Although 

any time period can be selected for the baseline, there are a couple of guidelines: 

 The calibration period should cover at least one full year and as long a period of relatively stable 

demand regime as possible. It should always span a multiple of full years so that there is no bias towards 

any season (where a full year starts on one date and ends on the preceding date a year later as per the 

current calibration period described above). 

 The calibration period should ideally incorporate a full range of climate conditions including a hotter, 

drier than average summer period as well as a cooler and wetter winter period.  This is to reduce the 

likelihood of the model extrapolating when predicting responses with more extreme climate periods. 

2.4 SOIL MOISTURE INDEX 

The model is unique in that it offers a simple soil moisture store model as a climate variable in the regression 

analysis.  The soil moisture index is used to model the antecedent soil moisture effects on demand or flow.  This 

particular soil moisture store model has been found to generate high correlations with water demand or flow in 

many separate applications. 

The soil moisture index is calculated using the following equation: 
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Where SMIt = Soil moisture index at time t 

Rt = Rainfall at time t 

Et = Evaporation at time t 

MR = Rainfall multiplier 

ME = Evaporation multiplier 

P = Evaporation power 

B = Base flow coefficient 

The base flow coefficient is used when modelling wastewater flows where the soil moisture index approximates 

a groundwater index.  When modelling water demands, the base flow coefficient is set to zero. 

3 EXAMPLE MODEL CALIBRATION 

For the example water supplier, the monthly WaterTrac model was developed using four years of water demand 

data. Several calibration periods were tested over the four years of available data. A two year calibration period 

from 1 January 2014 to 31 December 2015 provided the best statistical model. 

Four independent variables were tested during the calibration phase. Evaporation was tested in the initial 

regression analysis but resulted in a negative variable coefficient and low T statistic (absolute value). We would 

typically expect a positive rather than a negative variable response for evaporation, i.e. as evaporation increases, 

demands would also be expected to increase. We excluded evaporation from the regression analysis in the 

calibrated model.  

The T-test statistic is used to determine the significance of individual variables.  As a rule of thumb, in the 

regression analysis of daily water demand, a T statistic of absolute value greater than 2.0 suggests that the 

variable is significant in the regression and should be included in the regression model. The absolute value of 

the T statistic for evaporation was close to -2 meaning that evaporation was not statistically significant. A 2.0 

value for the T statistic equates to a 95% confidence interval that includes the value. The model user could 

confirm actual values for the T statistic through reference to T-test statistical tables. 

The calibration correlation is typical for this type of model and produced an R² statistic of 0.77 for the monthly 

model, which is to say, that 77% of the variations in daily per capita water production during the calibration 

period could be explained by the fitted model with the selected climate variables.  The modelled variable 

responses for the three selected climate variables in the monthly model are shown in Figure 3. 



 

Figure 3: Modelled Variable Responses for the Three Climate Variables (Monthly Model) 

The vertical axis on the plot represents the per capita response in L/capita/day for each of the three explanatory 

climate variables. The x-axis shows the corresponding percentage of the range for each of the climate variables. 

The plot shows that the climate variables produced the expected response patterns for the sample monthly 

model. Maximum temperature shows a positive response with water demands (e.g. as maximum temperature 

increases, water demands increase and the highest range of maximum temperature corresponds to a maximum 

response of approximately 200 L/capita/day).  

Rainfall and soil moisture index show a negative response with water demands (e.g. as rainfall increases, water 

demands decrease).  

4 EXAMPLE MODEL RESULTS 

Climate corrected production results are shown in Figure 4. Observed data is the raw non-climate corrected 

monthly water demand per capita. Predicted data is the regression model’s predicted demand per capita. The 

residual is the difference between observed and predicted values and indicates the ability of the model to predict 

demands during the calibration period. Periods of high historic water restrictions are also shown on the graph. 

Alert Level 3 is a total ban on domestic sprinklers – only hand held hosing permitted. Alert Level 3 also 

includes restrictions on outdoor water use for commercial/non-residential properties. 



 

Figure 3: Monthly Regression Analysis of Per Capita Demands 

The graph in Figure 4 also shows the 12 month rolling average climate correction trend for the historical 

records. This trend line shows that the climate corrected 12-month average demand has varied from a high of 

560 L/capita/day to a low of 480 L/capita/day in July 2016 (the end of the data period). The highest value of 560 

L/capita/day occurred from December 2013 to January 2014 during Alert Level 1 restrictions.  

The 12 month rolling average climate correction trend has been steadily decreasing since the peak in early 

summer 2013/14, indicating that customers have been reducing their water demands, most likely due to the 

water supplier’s active water demand management education programme. 

5 CONCLUSIONS 

In conclusion, the WaterTrac model can be used to: 

1. Correct historical demand records for the influence of climate. 

2. Identify whether changes in demand patterns are due to external influences such as demand management 

efforts or to climate variation from normal conditions. 

3. Predict climate driven demands from climate forecasts. 

 

 


