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ABSTRACT 

Since the 1990s the Artificial Neural Network (ANN) modelling approach has gained popularity for prediction 

and forecasting due to its ability to capture complex nonlinear relationships. The application of ANNs in the 

field of water treatment has been somewhat limited to date but the technique could prove to be a powerful tool 

in creating accurate models for predicting the performance of water treatment plants. In this paper, literature 

regarding modelling water treatment plant performance or a similar field of study has been assessed with the 

goal to establish the current state of creating an overall predictive water treatment plant model and identify 

knowledge gaps. A secondary goal is to establish a best practice for the modelling of water treatment plant 

performance. Only papers which helped in establishing the current state have been considered and this narrowed 

the number of assessed papers to 35. Modelling methods other than ANNs have also been reviewed and in 

conclusion insight has been gained in producing an overall water treatment plant model with model input 

selection and the generalisation ability being important aspects of the model and model development.  
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1 INTRODUCTION 

With rising populations, increased industrial and agricultural water usage, and climate changes come challenges 

to supply water of adequate quality and in sufficient quantities. Due to this growing pressure, the water 

treatment industry now has a greater emphasis on the optimisation of water treatment plants to improve 

capacity, quality, operational costs and capital expenditure (Bozkurt et al., 2014). Operation has become 

increasingly more complex over the past few decades as new technology has been developed and regulations 

have been tightened. 

The technologies utilised in water treatment can be energy intensive and costly, and a methodology which can 

predict plant performance and other key performance indicators is often lacking (Akinmolayan et al., 2015). 

Such a methodology could be beneficial to gain insight on different design and operating alternatives, 

identifying potential bottlenecks, and improve the operation of the water treatment plant by having a better 

understanding of the individual treatment processes. Modelling the water treatment plant performance may 

provide these benefits. 

The modelling of water treatment plants is an area of interest for water suppliers for its prediction and 

forecasting abilities. It is a cost-effective method to identify potential future capacity issues and could prove a 

powerful tool for long-term capital planning.  

The challenge in modelling water treatment plant performance is the complex dynamic nonlinear behaviour of 

water treatment systems. Traditional modelling methods like mathematical models, least squares regression and 

partial differential equations may be able to show general trends but often struggle predicting the outcome of 

specific events, making these models of less value for capital planning.  



A modelling method which has gained significant popularity since the 1990s is the artificial neural networks 

(ANN) approach. ANNs are capable of finding highly complex nonlinear relationships, the produced 

relationship, however, will be of low transparency, making it hard to grasp the actual relationship produced. 

This, in combination with the results not physically being measured, is a major barrier for the water treatment 

industry to adopt implementation of models within water treatment plant control.  

Although ANNs have gained popularity, only 8 of the 83 papers published between 2000 and 2014 about ANNs 

in the water treatment industry focused on water treatment performance (Wu et al., 2014). 

In this paper an overview will be given on traditional modelling methods and their applicability and flaws to 

accurately predict and forecast water treatment performance. The application of ANNs on water treatment 

modelling or equal fields will be discussed, including the applicability to a complete predictive water treatment 

plant model.  

2 OVERVIEW OF PAPERS REVIEWED 

The year of publication of the articles considered has been plotted in Figure 1. There is a fairly even distribution 

of articles published in each year. As the overall goal was to gather information on creating a complete 

predictive water treatment plant model, articles which did not share valuable insight or recommendations were 

excluded. A large number of papers regarding modelling water treatment performance were statements of work 

done and did not discuss recommendations for future work. These kind of articles were not reviewed in this 

paper.  

As the number of articles regarding modelling water treatment performance was limited, a few articles in areas 

similar with cross-over knowledge were included in this review. Figure 2 shows an overview of the distribution 

of articles by industry or area.  

 

Figure 1: Distribution of papers reviewed by year of publication. 
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3 REVIEW OF PAPERS 

One of the goals of this article was to have an overview of past modelling efforts on water treatment plants. 

Modelling is usually done in an organised manner with a clear methodology. A methodology for developing 

ANN models was proposed by Wu et al. (2014). The steps proposed by Wu et al. have been modified into the 

following steps: 

 Data Preparation 

 Model Architecture Selection 

 Model Structure Selection 

 Model Calibration 

 Model Validation 

 Model Implementation  

An overview of the number of articles considering these steps has been plotted in Figure 3. Note that articles 

can be counted multiple times if multiple steps have been considered. Articles have only been included in each 

section if clear recommendations were given on the specific modelling step.  

Figure 2: Distribution of papers reviewed by industry or area. 
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Figure 3: Distribution of papers by modelling step considered. 

13

12

6

4

10

5

D
at

a 
Pr

ep
ar

at
io

n

Arc
hi

te
ct

ur
e 

Se
le
ct

io
n

St
ru

ct
ur

e 
Se

le
ct

io
n

Cal
ib

ra
tio

n

Val
id

at
io

n

Im
ple

m
en

ta
tio

n

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N
u

m
b

e
r 

o
f 

p
a
p

e
rs

 



 

3.1 DATA PREPARATION 

Data preparation involves the processes of input selection and data splitting. Input is divided in to the procedure 

of selecting input parameters based on input significance and input independence (Bowden et al., 2005).  

Input significance is the significance of the relationship between potential inputs and outputs. Techniques to 

assess this relationship are often analytical methods based on correlation and mutual information (Li et al., 

2008). For some modelling exercises ad-hoc methods based on available data and/or domain knowledge have to 

be used. An iterative process can also be followed by applying constructive or pruning methods while 

calibrating the model (Diamantopoulou et al., 2007). Other popular methods are the use of genetic algorithms 

and trial-and-error (Maier et al., 2010).   

Input independence is often not assessed but there are several methods to determine input independence. These 

methods can be divided into dimensionality reduction methods and filtering methods. Dimensionality reduction 

can be achieved by principal component analysis and clustering analysis or self-organising maps (SOM) (Maier 

et al., 2010, Cho et al., 2011). Filtering is similar to the pruning method in input significance where the partial 

mutual information is assessed (May et al., 2008). 

Data splitting involves the splitting of the dataset into training, validation and test sets. Random data splitting is 

most common but sometimes an understanding of the underlying physical process or domain knowledge is taken 

into account (Haas, 2004). Sometimes predefined rules are set to the data sets to have an equal statistical 

distribution across all sets. This is often achieved by trial-and-error or optimisation methods like genetic 

algorithms (Maier et al., 2010). 

An overview of the articles reviewed which discuss data preparation can be found in Table 1. Articles on 

general modelling have also been included as they add value to the overall goal of developing a model for water 

treatment plant performance.  

Al-Abri & Hilal (2008) have used neural networks to model the coagulation and filtration process. They 

compared modelling results between raw data and data that has been transformed using principal component 

analysis (PCA). They have found PCA is generally good for reducing computation time at the cost of accuracy. 

Dürrenmatt & Gujer (2012) argue expert knowledge should be used to reduce datasets to meaningful and 

reliable sensors and use PCA to prevent collinearity between input parameters. They found applying PCA 

resulted in less accurate models which they account to the loss of information in applying PCA. 

Baxter et al. (2001) used ANNs to describe a variety of variables within water treatment. They recommend the 

dataset should be representative for the full treatment window. At least a year of data is recommended due to the 

Table 1: Details of papers reviewed including data preparation 

Author System Modelled variable(s) 

(Al-Abri & Hilal, 2008) Drinking water (filtration) Retention time and Fouling 

(Baxter et al., 2001) Drinking water Colour, Flow demand, Particle count, Chemical 

doses 

(Bowden et al., 2005) General modelling - 

(Ding et al., 2014) Drinking water Water quality 

(Dürrenmatt & Gujer, 2011) Waste water COD, Ammonia 

(Griffiths & Andrews, 2011) Drinking water (filtration) Turbidity, Particle count 

(Juntunen et al., 2012) Drinking water Aluminium and Turbidity 

(Maier & Dandy, 2000) General modelling  - 

(Maier et al., 2010) General modelling - 

(Mjalli et al., 2007) Waste water TSS, COD, BOD 

(Baxter et al., 2002) Drinking water Turbidity 

(Wu & Lo, 2010) Drinking water Coagulant dose 

(Wu et al., 2014) General modelling - 



cyclical nature and descriptive statistics could be used to identify daily or seasonal variations. Griffiths & 

Andrews (2011) go one step further in suggesting seasonal datasets should be used and a model for each season 

should be developed. Ding et al. (2004) also suggest categorisation might be beneficial for large datasets but at 

the cost of model accuracy.  

Juntunen et al. (2012) used statistical methods to determine model inputs and reduce model complexity. Water 

processes, however, are often nonlinear systems which can’t be fully captured by correlation coefficients and 

although Juntunen et al. found accurate correlations, critical information might be lost by not considering the 

nonlinearity. Wu & Lo (2010) also suggest selecting input parameters based on the correlation coefficient is 

sufficient. They found data normalisation doesn’t have a significant effect. 

Mjalli et al. (2007), however, argue data should be normalised to have zero mean and unity deviation. They 

argue it is therefore less likely for machine learning models to overfit or underfit. They had moderate success in 

modelling waste water treatment plant performance.  

Smith et al. (2002) suggest single output models should be preferred over multiple output models to reduce the 

overall prediction error. They also suggest input selection should be based on known or suspected relationships, 

literature and data availability. 

Bowden et al. (2005), Maier & Dandy (2000), Maier et al. (2010) and Wu et al. (2014) are not specific on water 

treatment but do provide a clear methodology on modelling. It provides a framework and guidance in the overall 

goal of modelling the performance of a water treatment plant.  

3.2 MODEL ARCHITECTURE SELECTION 

Model architecture selection involves the selection of the modelling method e.g. ANN, regression or genetic 

programming etc. The main architectures considered in this review are listed in Table 2.  

Within ANNs several sub-architectures exist but the most common architecture is the multi-layer perceptron 

(MLP), which is a feedforward neural network consisting of an input layer, a number of hidden layers and an 

output layer. Other architectures may include feedback loops which enables the model to describe dynamic 

systems better (Wu et al., 2014, Karamouz et al., 2008). 

Akinmolayan et al. (2005) investigated the use of mechanistic models within water treatment. They found 

mechanistic models to describe the overall trends moderately well but they were unable to describe specific 

events accurately making them less interesting for predictive modelling. Conlin et al. (1997) also investigated 

the use of mechanistic models and found that mechanistic models in combination with ANNs gave the best 

Table 2: Several model architectures and descriptions in order of increasing complexity and decreasing 

transparency 

Model architecture Description 

Least Squares 

Regression (LSR) 

Least squares regression is based on the minimisation of the sum of squares between 

the data points and regression line. It is a simple model usually used when there are 

a small number of variables and where the relationships are linear or linear after 

transformation. 

Genetic Programming  Genetic Programming is a modelling technique best represented by an evolving tree 

structure. Trees are built up constants, operators and variables resulting in a 

mathematically easy to understand relationship.  

Support Vector 

Machines (SVM) 

Support Vector Machines is one of many case-based reasoning methods but 

generally the most accurate. Data is classified in different classes and an output is 

linked to the class. Only useful when a lot of data is available and the whole range is 

captured.  

Principal Component 

Regression (PCR) 

Similar to LSR but the dimension of the input data is reduced.  

Artificial Neural 

Network (ANN) 

ANNs make use of hidden layers to transform the data, apply weights to the new 

layers and resulting in an output. ANNs are highly complex but are able to find 

accurate correlations.  



performance. The use of hybrid models or combined models could have a beneficial effect. 

Dürrenmatt & Gujer (2012) explored several types of architectures but found no significant difference in 

performance between these architectures. They suggest in that case selection should be based on secondary 

parameters like model transparency.  

Hong Guo et al. (2015) compared ANNs and Support Vector Machines (SVMs) for the prediction of wastewater 

treatment plant (WWTP) effluent concentrations. Both models were able to describe effluent Total Nitrogen. 

The SVM performed better in accuracy while the ANN elucidated more on the physical related cause-and-effect 

relationship. Both were found suitable for prediction but the ANN describes the intrinsic relationship better. 

Juntunen et al. (2012) also compared two model architectures, the ANN and Least Squares Regression (LSR). 

They found the nonlinear ANN model was able to describe the process better but the improvement found was 

small compared to the results of LSR. They suggested a simpler model is used if the complex ANN does not 

improve model performance significantly.  

Kennedy et al. (2015) investigated four different types of ANNs. Although they found the multi-layer 

perceptron to yield best results, they were unsuccessful in their secondary objective to determine which type of 

ANN model will provide best results beforehand.  

Articles from Chunanbo Guo et al. (2015), Chau (2016), Gray & MacDonell (1997), Maier & Dandy (2000), 

Maier et al. (2010) and Wu et al. (2014) provide information on modelling in general and the differences 

between the architectures which is essential in the overall objective of modelling the performance of a water 

treatment plant. They provide guidelines and recommend domains in which to use which model architecture.  

3.3 MODEL STRUCTURE SELECTION 

Model structure selection is the determination of the number of layers, nodes, terms etc. and their 

interconnectivity. There are three main methods to determine the model structure (Maier et al., 2010). The first 

one is trial-and-error or past experiences. The model complexity is chosen and the performance evaluated after 

which adjustments to the model structure are made and the performance is evaluated again.  

The second method includes constructive or pruning methods. These are stepwise model structure selections 

where the performance is evaluated after each iteration. A typical indicator of termination is the coefficient of 

determination (R2) reaching a certain threshold or its change after each iteration not considered significant 

anymore.  

Lastly, there are global optimisation methods which determine the best option within given bounds. These aren’t 

commonly used due to the complexity involved.  

Model structure selection is usually not discussed. Maier & Dandy (2010), Maier et al. (2010) and Wu et al. 

(2014) provide general guidelines on modelling as seen in the previous sections.  

Al-Abri & Hilal (2008) and Smith et al. (2002) selected their model structure by trial-and-error with no clear 

methodology. Griffiths & Andrews (2011) also determined their model structure based on trial-and-error and 

found the optimum number of neurons to be 75% of the number of input parameters.  

More focus should be given to the systematic approach of selecting model structure. Most of the articles don’t 

mention their approach and although trial-and-error is a sound approach in most cases, it is not transparent and 

hard to reproduce the authors followed process for model structure selection.  

3.4 MODEL CALIBRATION 

Model calibration is the process of adjusting model parameters and forcing within the margins of uncertainties 

to obtain a model representation of the processes of interest that satisfies pre-agreed criteria. 

Calibration methods can be either global or local. Most modelling methods use local calibration where in each 

iteration, the weight is changed slightly until it finds a minimum (which can be a local minimum). Global 

calibration adjusts the weights randomly and picks the minimal value found. There is less chance of finding a 

local minimum but global calibration is significantly more time consuming.  



Model calibration is not a topic which is discussed in great detail. In the reviewed papers, it was most of the 

times inherent to the model used and therefore not discussed, hence the limited number of articles discussed in 

this section. 

Maier & Dandy (2000), Maier et al. (2010) and Wu et al. (2014) offer guidance in model calibration selection 

while Zahrim et al. (2015) used response surface methods for model development. In principle there are only 

two main methods for model calibration and there is no best option as this will be dependent on the dataset. 

Maier et al. (2010) found that evaluation of the different calibration methods has had very little attention and is 

an area to be explored. 

3.5 MODEL VALIDATION 

The purpose of model validation is to exclude errors or detectable flaws from the developed model so it can be 

used for its intended purpose with confidence. Replicative, predictive and structural validity are the three 

aspects model validation should consider.  

Replicative validity is inherently connected to model calibration as it is the evaluation of the trained model with 

data previously used in other steps of the model development. Replicative validity is often not checked as it is 

assumed the model calibration results are valid. Additionally, the error distribution could be explored to verify if 

there is a normal distribution.  

Predictive validity tests the generalisation ability of the model by applying a new, unknown dataset to the 

model. This is usually evaluated by the validation and optionally the test dataset. Validity is evaluated with 

quantitative error measures like the coefficient of determination (R2), Mean Absolute Error (MAE) and the 

Approximation Error.  

Structural validity is the evaluation of the model outside of the bounds of the training dataset. This is usually 

done by a sensitivity analysis and evaluating if the outcome is plausible and follows expectations. It is also a 

method to determine the uncertainty of the model.  

Gontarski & Rodrigues (2000) argue validation should be used to determine the input parameters in an iterative 

process to improve the model efficiency. Whereas it would be ideal to be able to predetermine the input 

significance, it is important to improve the efficiency when creating a holistic water treatment plant model 

comprising several unit models.  

Griffiths & Andrews (2011) suggest using the MAE and R2 as indicators for predictive validity. As the MAE is 

not normalised, when evaluating different models with different ranges a better metric would be the 

Approximation Error which is a relative error measure. Rak (2013) on the other hand suggest the correlation 

coefficient is an important indicator. This may be true for predicting overall trends but not for accurate 

modelling of performance.  

Hong Guo et al. (2015) conducted a sensitivity analysis to evaluate structural validity. They compared two 

models which performed equally well but surprisingly had a significant difference in significant input 

parameters. In combination with the sensitivity analysis this indicated the input parameters weren’t independent 

and they suggested in this case input selection should be re-evaluated.  

Kennedy et al. (2015) compared several models which had similar performance. They suggest additional metrics 

should be used when there’s no apparent preferred model. Secondary metrics like model transparency, 

efficiency and others should be important in selecting the preferred model then.  

Smith et al. (2002) suggested replicative and predictive validity should be evaluated by rearranging the datasets. 

This enables evaluation of the stability of the model. Yoon et al. (2011) suggests evaluation of the model should 

be done by evaluating the generalisation ability in the form of ratio tests between the root-mean square error 

(RMSE) of the test and train set and the validation and train set. A value close to 1 for both ratios would be the 

perfect case indicating the model has not overfitted or underfitted for a specific dataset.  

Maier & Dandy (2000), Maier et al. (2010) and Wu et al. (2014) again provide general modelling guidelines.  



3.6 MODEL IMPLEMENTATION 

After unit models have been created and validated they have to be combined into one model. One step further 

could be the implementation of the model into the plants control system. Articles on model implementation in 

the water treatment industry are quite limited. There is, however, enough literature available about model 

implementation in other industries.  

Dürrenmatt & Gujer (2012) argue the importance of implementing some measure of uncertainty when 

implementing model based parameters into a control system. Although it is important to know there is a measure 

of uncertainty it can be argued this will not improve plant performance and might actually make the industry 

more reluctant to model implementation in control systems. 

Griffiths & Andrews (2011) suggest a model for implementation should be run alongside actual operation to 

evaluate current capabilities. Smith et al. (2002) argue that the model is only valid as long as the input 

parameters stay within the calibrated range and the model requires updating when values are out of range. Zhang 

& Stanley (1999) go one step further in suggesting real-time learning should be implemented for continuous 

model improvement. Maier (2004) warns for scaling issues when implementing the model at a full scale plant. 

4 DISCUSSION 

Although the number of relevant articles are limited some valuable information has been gained. The topic of 

traditional modelling methods in water treatment will be discussed after which the implementation of ANNs 

will be discussed. The discussion will be concluded with the applicability to a complete predictive water 

treatment plant model. 

4.1 TRADITIONAL MODELLING METHODS 

Traditional modelling methods have limited applications as most of the methods are unable to describe the 

complex nonlinear relationships that exist in water treatment. One of the most accepted models nowadays is the 

surrogate for organics: UV absorbance at 254 nm (Korshin et al., 1997). Most other parameters, if not all 

parameters, used in plant control are directly measurable. A lot of plants still rely on lab sampling for process 

control which is time consuming and has a lag factor. Lab samples have been established and the confidence 

level in the results are high in contrast to models which carry an inherent error measure and values cannot be 

verified easily.  

The major flaw in traditional modelling methods is the inability to describe complex nonlinear problems 

accurately. Although academics have come up with theories on water treatment processes, the models are able 

to describe the process in general trends but are unable to describe them in detail and in specific events. A 

model is usually developed to get a better understanding of the process and to help in determining areas of 

improvement and developing contingency plans in a cheap and effective manner. This makes these models 

unsuitable for plant control or planning purposes. 

Despite the known flaws several processes can sometimes be described by linear models and where possible this 

should be implemented as linear models usually are transparent, easy to understand and easy to adjust or 

recalibrate. They are computationally more efficient so they should be implemented where possible.  

4.2 ARTIFICIAL NEURAL NETWORKS  

The use of artificial networks in plant control or for resource planning in water treatment is very limited. A few 

articles, like Griffiths & Andrews (2011), mention implementation of artificial neural network models in the 

plant control system, but they are run in parallel and are not actually part of the control system. Models will 

always carry a certain amount of risk and error but this is no different from lab sampling for instance. It is, 

however, the inability to verify the error what makes ANN models implemented in plant control systems 

limited.  

There are endless possibilities for the use of ANNs in water treatment. The performance and accuracy is, 

however, very much dependent on the quality of the dataset and the chosen model structure. A key risk in ANN 

development is overfitting or underfitting the data. Generalisation of the model is very important but is hard to 



quantify. Yoon et al. (2011) have already suggested evaluation of the generalisation ability could be done by 

determining the ratio between the RMSE of the different datasets. Generalisation could also be assessed by 

conducting a sensitivity analysis on the model and evaluate the results of extreme but plausible input values. 

The generalisation ability of a model is not often discussed in literature and is a subject which should receive 

more attention.  

The main drawback of developing models using ANNs in the water treatment industry is the fact that each plant 

is unique and the created models are, in most cases, non-transferable. This makes modelling of performance 

both costly and time consuming. A point of focus in the future should therefore be investigating the possibility 

to normalise and generalise data to enable models to be transferable. This is an inherent flaw of ANNs and most 

other modelling methods that it is an empiric approach and the model is only as good as the input data. 

Nevertheless, efforts could be made to normalise input data for local dimensions. For instance, by using solids 

load for filters as an input instead of flow, turbidity and physical filter parameters like surface area and depth. 

ANNs are very promising and should be used more often in industry but caution is advised to what the model is 

actually describing and what the error is. If proven to be successful it can be a powerful tool in creating accurate 

models. 

4.3 PREDICTIVE WATER TREATMENT PLANT MODEL 

Constructing a complete predictive water treatment plant model is a difficult process. All models will carry a 

certain amount of error, which, when put in series, can have major consequences. On the other hand, a complete 

predictive water treatment plant model could be used to understand plant performance under adverse water 

quality conditions and may therefore be a tool to determine bottleneck(s) and may help in capex decision 

making. In general, it could also be a tool to determine how the plant should be run to maximise efficiency. 

When used for decision making the model has to be accurate, generalised and fit for purpose. 

In order for a model to be fit for purpose it should be made as simple as possible. The amount of building blocks 

should be kept to a minimum to minimise the evolving error. The same goes for the number of parameters used 

as these could contribute to the error. In the authors view it is therefore important to evaluate input significance 

and independence.  

Another subject that should receive more attention is the generalisation of the models used. If possible, models 

should be built in such a way that when upgrade work is done, the model can be adjusted easily by changing 

several constants. On the other hand, this could also help in the validation and confidence in the model by 

assessing the model on a different plant with similar treatment steps.  

The implementation of ANNs or any other model type in the creation of a predictive water treatment plant 

model is an area which hasn’t been explored extensively yet and a lot of risks exist in doing so. Nevertheless, 

with the current state of modelling methods and computing power it is possible to create very accurate models. 

Caution should be taken when assembling the building blocks and a lot of care should be taken when selecting 

the input parameters.  

5 CONCLUSION 

Published work on modelling water treatment plant performance is very limited. Although a larger number of 

articles are published than reviewed in this paper, a lot of articles are factual statements and lack discussion to 

help future modelling endeavours.  

Many papers highlight the data preparation step. A model is only as good as the dataset and plays a crucial role 

in achieving your modelling goals. Several methods are used to divide datasets but more attention should be 

given to selection of inputs based on significance and independence. Including too many parameters may result 

in overfitting the model and increasing the error function while including too few parameters may result in 

underfitting and not capturing the true relationship.  

The model structure and architecture selection is usually done at the project start and only a few papers 

evaluated the performance of different model types. The more traditional modelling methods have a clear deficit 



to ANNs in their ability to describe nonlinear problems. Nevertheless, these models should still be explored as 

they are more transparent and therefore easier to use when creating an overall predictive water treatment plant 

model. 

According to Maier et al. (2010) over 60% of the model structure selections is done ad-hoc. A more systematic 

approach in the form of a stepwise pruning or constructive method would improve the justification for a certain 

chosen model structure. Justification of decisions made is a feature often lacking in papers. 

Model calibration is a topic rarely discussed in the literature. The calibration method is usually connected to the 

chosen model architecture but within ANNs several calibration methods exist. It can be concluded that in most 

articles the model has been calibrated locally. If the error surface is smooth this is the most efficient method in 

finding the best correlation but this is not always the case. Unfortunately, there hasn’t been much research on 

the evaluation of different calibration methods and this is an area that should be investigated further.  

Model validation is usually done by evaluating the performance with statistic parameters. This gives a good 

indication on the validation of the model on the dataset but more extensive validation should be explored more 

often. Structural validity should be tested by conducting a sensitivity analysis and even predictive validity 

should be evaluated more by assessing the generalisation ability.  

Model implementation is rarely reported but the general consensus is to have extensive testing by running the 

model alongside plant operation. Performance of the model can then be evaluated and changes could be made 

based on new findings. This area hasn’t been explored much yet and methodologies aren’t yet developed for the 

water treatment industry.  

Overall a lot of insights have been gained on modelling in the water treatment industry and valuable lessons and 

tips have been gathered which help in developing a water treatment plant model. Two areas have been identified 

as important: data preparation in the form of input selection and model validation by assessing the 

generalisation ability.  

REFERENCES 

Akinmolayan, F., Thornhill, N., and Sorensen, E. (2015),‘A detailed mathematical modelling representation of 

clean water treatment plants’, in, 12th International Symposium on Process Systems Engineering and 25th 

European Symposium on Computer Aided Process Engineering, Elsevier, pp.2537–2542 

Al-Abri, M. and Hilal, N. (2008) ‘Artificial neural network simulation of combined humic substance 

coagulation and membrane filtration’ Chemical Engineering Journal, 141, 1-3, 27–34 

Baxter, C.W. et al. (2001) ‘Drinking water quality and treatment: the use of artificial neural networks’ Canadian 

Journal of Civil Engineering, 28, S1, 26–35 

Baxter, C.W. et al. (2002) ‘Developing artificial neural network models of water treatment processes: a guide 

for utilities’ Journal of Environmental Engineering and Science, 1, 3, 201–211 

Bowden, G.J., Dandy, G.C., and Maier, H.R. (2005) ‘Input determination for neural network models in water 

resources applications. part 1—background and methodology’ Journal of Hydrology, 301, 1-4, 75–92 

Bozkurt, H. et al. (2014),‘Superstructure development and optimization under uncertainty for design and retrofit 

of municipal wastewater treatment plants’, in, 24 European Symposium on Computer Aided Process 

Engineering, Elsevier, pp.37–42 

Chau, K. (2006) ‘A review on integration of artificial intelligence into water quality modelling’ Marine 

Pollution Bulletin, 52, 7, 726–733 

Cho, K.H. et al. (2011) ‘Prediction of contamination potential of groundwater arsenic in cambodia, laos, and 

thailand using artificial neural network’ Water Research, 45, 17, 5535–5544 

Conlin, J., Peel, C., and Montague, G.A. (1997) ‘Modelling pressure drop in water treatment’ Artificial 

Intelligence in Engineering, 11, 4, 393–400 



Diamantopoulou, M.J., Antonopoulos, V.Z., and Papamichail, D.M. (2007) ‘Cascade correlation artificial neural 

networks for estimating missing monthly values of water quality parameters in rivers’ Water Resources 

Management, 21, 3, 649–662 

Ding, Y.R. et al. (2014) ‘The use of combined neural networks and genetic algorithms for prediction of river 

water quality’ Journal of Applied Research and Technology, 12, 3, 493–499 

Dürrenmatt, D.J. and Gujer, W. (2011) ‘Data-driven modeling approaches to support wastewater treatment plant 

operation’ Environmental Modelling & Software, 30, 47–56 

Gontarski, C. et al. (2000) ‘Simulation of an industrial wastewater treatment plant using artificial neural 

networks’ Computers & Chemical Engineering, 24, 2-7, 1719–1723 

Gray, A.R. and MacDonell, S.G. (1997) ‘A comparison of techniques for developing predictive models of 

software metrics’ Information and Software Technology, 39, 6, 425–437 

Griffiths, K.A. and Andrews, R.C. (2011) ‘Application of artificial neural networks for filtration optimization’ 

Journal of Environmental Engineering, 137, 11, 1040–1047 

Guo, C. et al. (2015),‘Toward a new generation of ecological modelling techniques’, in, Advanced Modelling 

Techniques for Studying Global Changes in Environmental Sciences, Elsevier B.V., pp.11–44 

Guo, H. et al. (2015) ‘Prediction of effluent concentration in a wastewater treatment plant using machine 

learning models’ Journal of Environmental Sciences, 32, 1–12 

Haas, C.N. (2004) ‘Neural networks provide superior description of giardia lamblia inactivation by free 

chlorine’ Water Research, 38, 14–15, 3449–3457 

Juntunen, P. et al. (2012) ‘Modelling of water quality: an application to a water treatment process’ Applied 

Computational Intelligence and Soft Computing, 2012, 1–9 

Karamouz, M., Razavi, S., and Araghinejad, S. (2008) ‘Long-lead seasonal rainfall forecasting using time-delay 

recurrent neural networks: a case study’ Hydrological Processes, 22, 2, 229–241 

Kennedy, M.J., Gandomi, A.H., and Miller, C.M. (2015) ‘Coagulation modeling using artificial neural networks 

to predict both turbidity and dom-parafac component removal’ Journal of Environmental Chemical 

Engineering, 3, 4, 2829–2838 

Korshin, G. V, Li, C.-W., and Benjamin, M.M. (1997) ‘Monitoring the properties of natural organic matter 

through uv spectroscopy: a consistent theory’ Water Research, 31, 7, 1787–1795 

Li, X. et al. (2008) ‘Modelling nitrogen composition in streams on the boreal plain using genetic adaptive 

general regression neural networks’ Journal of Environmental Engineering and Science, 7, 109–125 

Maier, H. (2004) ‘Use of artificial neural networks for predicting optimal alum doses and treated water quality 

parameters’ Environmental Modelling & Software, 19, 5, 485–494 

Maier, H.R. et al. (2010) ‘Methods used for the development of neural networks for the prediction of water 

resource variables in river systems: current status and future directions’ Environmental Modelling and Software, 

25, 8, 891–909 

Maier, H.R. and Dandy, G.C. (2000) ‘Neural networks for the prediction and forecasting of water resources 

variables: a review of modelling issues and applications’ Environmental Modelling & Software, 15, 1, 101–124 

May, R.J. et al. (2008) ‘Application of partial mutual information variable selection to ann forecasting of water 

quality in water distribution systems’ Environmental Modelling & Software, 23, 10–11, 1289–1299 

Mjalli, F.S., Al-Asheh, S., and Alfadala, H.E. (2007) ‘Use of artificial neural network black-box modeling for 

the prediction of wastewater treatment plants performance’ Journal of Environmental Management, 83, 3, 329–

338 



Rak, A. (2013) ‘Water turbidity modelling during water treatment processes using artificial neural networks’ 

International Journal of Water Sciences, 2, 1 

Simon, S. (2012) ‘Accuracy driven artificial neural networks in stock market prediction’ International Journal 

on Soft Computing, 3, 2, 35–44 

Wu, G.-D. and Lo, S.-L. (2010) ‘Effects of data normalization and inherent-factor on decision of optimal 

coagulant dosage in water treatment by artificial neural network’ Expert Systems with Applications, 37, 7, 4974–

4983 

Wu, W., Dandy, G.C., and Maier, H.R. (2014) ‘Protocol for developing ann models and its application to the 

assessment of the quality of the ann model development process in drinking water quality modelling’ 

Environmental Modelling & Software, 54, 108–127 

Yoon, H. et al. (2011) ‘A comparative study of artificial neural networks and support vector machines for 

predicting groundwater levels in a coastal aquifer’ Journal of Hydrology, 396, 1-2, 128–138 

Zahrim, A.Y., Nasimah, A., and Hilal, N. (2015) ‘Coagulation/flocculation of lignin aqueous solution in single 

stage mixing tank system: modeling and optimization by response surface methodology’ Journal of 

Environmental Chemical Engineering, 3, 3, 2145–2154 

 

 


