Where is water safety planning going globally? How can sanitation safety plans support WSPs?

JAMIE BARTRAM AND KAREN SETTY 19TH SEPTEMBER 2017

Some history

UNC WATER INSTITUTE

- Acenaphthene
- 2. Acrolein
- 3. Acrylonitrile
- 4. Benzene
- 5. Benzidine
- 6. Carbon tetrachloride
- 7. Chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 9. Hexachlorobenzene
- 10. 1,2-dichloroethane
- 11. 1,1,1-trichloreothane
- 12. Hexachloroethane
- 13. 1,1-dichloroethane
- 14. 1,1,2-trichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 16. Chloroethane
- 17. (Removed)
- 18. Bis(2-chloroethyl) ether
- 19. 2-chloroethyl vinyl ethers
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 22. Parachlorometa cresol
- 23. Chloroform
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 28. 3,3-dichlorobenzidine
- 29. 1,1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol
- 32. 1,2-dichloropropane
- 33. 1,3-dichloropropylene
- 34. 2,4-dimethylphenol

- 35. 2,4-dinitrotoluene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine
- 38. Ethylbenzene
- 39. Fluoranthene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. Bis(2-chloroisopropyl) ether
- 43. Bis(2-chloroethoxy) methane
- 44. Methylene chloride
- 45. Methyl chloride
- 46. Methyl bromide
- 47. Bromoform
- 48. Dichlorobromomethane
- 49. (Removed)
- 50. (Removed)
- 51. Chlorodibromomethane
- 52. Hexachlorobutadiene
- 53. Hexachlorocyclopentadiene
- 54. Isophorone
- 55. Naphthalene
- 56. Nitrobenzene
- 57. 2-nitrophenol
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 60. 4,6-dinitro-o-cresol
- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine
- 63. N-nitrosodi-n-propylamine
- 64. Pentachlorophenol
- 65. Phenol
- 66. Bis(2-ethylhexyl) phthalate
- 67. Butyl benzyl phthalate
- 68. Di-N-Butyl Phthalate

1994: From detection to prevention

WHO Guidelines development 10 year journey

490 people, 90 countries, 50 consultative processes

Contributors and Collaborative Meetings

Why we need to review our approach

- In all countries waterborne illness still occurs
- Outbreaks show us that we cannot solely rely on water treatment and indicators
- End-point testing is too-little-too-late

Disease still happening

8%

USA (1989-1990)

- 26 waterborne disease outbreaks reported
- Causes:
 - inadequate water treatment 54%
 - untreated groundwater 23%
 - distribution deficiencies 12%
 - untreated surface water

Treatment infallibility

- Milwaukee (1993) showed that sophisticated treatment not sufficient event driven outbreak
- 403,000 individuals contracted cryptosporidiosis
- Treated water complied with all WHO guidelines (contained no E. coli)

End-point testing (too little too late)

- Example Melbourne Water
- 14,000 samples in 2001 (100 mL samples)
- 1,000,000,000 L per day (1000 ML)
- Sample millionth of 1% of supply
- < 0.2 second snapshot per year

Water Safety Plans made ... Simple

Water Safety Plans made ... Simple In Practice

Understand Service Action of the Case for WSPs Service Action Service

Compared to end-point monitoring, WSPs:

 Save utility money in the long-term 2. Better prevent waterborne disease 3. Work in resource limited settings 4. Are more sustainable (utility engagement in WSP development builds capacity) 5. Are internationally accepted Demonstrate 'due diligence'

Site	Parameter	Change post- intervention	Threshold value	Source
1	Total coliform	Increase in compliance	>0 MPN/100ml	EU and French quality limit
	Turbidity	Increase in compliance	>2 NTU	French quality reference for tap

Site	Parameter	Change post- intervention	Threshold value	Source
1	Total coliform	Increase in compliance	>0 MPN/100ml	EU and French quality limit
	Turbidity	Increase in compliance	>2 NTU	French quality reference for tap
3	Free chlorine	Increase in compliance	<0.05 mg/l	WSP critical limit for chlorination
	(sensors)			

Site	Parameter	Change post- intervention	Threshold value	Source
1	Total coliform	Increase in compliance	>0 MPN/100ml	EU and French quality limit
	Turbidity	Increase in compliance	>2 NTU	French quality reference for tap
3	Free chlorine	Increase in compliance	<0.05 mg/l	WSP critical limit for chlorination
	(sensors)			
4	Bromate	Increase in compliance	>10 µg/l	EU and French quality limit
	Free chlorine (surface	Increase in compliance	<0.2 mg/l *simplified	WSP operational limit (surface water
	water plant only)			plant)

Site	Parameter	Change post- intervention	Threshold value	Source
1	Total coliform	Increase in compliance	>0 MPN/100ml	EU and French quality limit
	Turbidity	Increase in compliance	>2 NTU	French quality reference for tap
3	Free chlorine (sensors)	Increase in compliance	<0.05 mg/l	WSP critical limit for chlorination
4	Bromate	Increase in compliance	>10 µg/l	EU and French quality limit
	Free chlorine (surface water plant only)	Increase in compliance	<0.2 mg/l *simplified	WSP operational limit (surface water plant)
5 (full)	Aluminum	Increase in compliance	>100 µg/l	Suez internal recommended practice
	THMs	Increase in compliance	≥50 µg/L	Suez recommendation for outlet of plant
		Increase in compliance	>100 µg/l	EU and Spanish quality limit for network
	Free chlorine (sensors)	Increase in compliance	<0.2 mg/l *simplified	Catalunya/WSP critical limit for chlorination
	Aluminum	Increase in compliance	>200 µg/L	EU and Spanish and regional quality limit
	Turbidity (sensors	Decrease in compliance	≥0.75 NTU	WSP operational limit
	after sand filters)	Decrease in compliance	≥1 NTU *simplified	WSP critical limit
	Turbidity (sensors)	Increase in compliance	>0.5 NTU	Spanish quality reference for plant outlet
	Nickel	Increase in compliance	<550 mg I2/g	WSP operational level for granular activated carbon

II

UTE

Incidence of diarrhea at 7 Primary Health Care Centers (per month per 1000 inhabitants)

Result: Mean incidence of diarrhea significantly higher before than after WSP at five out of seven PHCCs (at V0,V1,V16,V3 and V17)

Gunnarsdóttir, et al. (2012). Benefits of water safety plans: microbiology, compliance, and public health. *Environ. Sci. Technol.* 46 (14), 7782–7789.

WSP uptake

WHO. 2017. Global status report on water safety plans.

Pre-conditions -> Getting started -> Keeping up

Pre-conditions → Getting started → Keeping up

Risk: New programs can fail if guidance is (or has a reputation as) overly technical, vague, or difficult¹

- Main WSP manual is undergoing updates based on user feedback²
- > WHO has developed a number of more context-specific manuals (e.g., for small systems, surface water systems, auditing)
- Manuals are also a backed by crowdsourced information on wsportal.org

"Make it easy for people to 'do the right thing" – WHO WSP Manual, 2009, pg 75

Pre-conditions - Getting started - Keeping up

External factors:

- Culture that values safe water³
- Trigger event/recognition of need
- Cooperation of government/oversight agencies^{4,5}
- Peer support/local case studies⁶ Internal factors:
- Leaders/champions⁷
- Readiness (including resources)⁸
- Fidelity to the developers' intentions

Alignment of local WSP goals with broader public health goals⁹

Understanding of WSP among staff¹⁰

Avoiding "tokenism"⁷

• Practice of making only a perfunctory or symbolic effort to do something

Frequent internal and external audits¹⁰

Attention to weak signals, wildcards, and near misses¹¹

Havelock North?

Water Safety Plan

versus

Water Safety Planning Framework for Safe Drinking-Water

WSP described the risks, but perhaps the heart of the program was not being followed:

- Lack of communication among four employee groups
- Risks not well-understood among employees
- Infrastructure not being maintained

Havelock North?

Water Safety Plan

versus

Water Safety Planning Framework for Safe Drinking-Water

Legislation

- Health-based targets
- Clear assignment of responsibilities

Independent Surveillance?

WSPs and SSPs

SSPs typically consider human waste management

- Great! All of shit cycle; But, also worry about animal waste, chemicals, etc.
- \rightarrow Necessary but not sufficient

WSPs should consider diverse watershed activities that could affect source waters

Thank You

Q&A

References (Making it Work)

- 1. Baum et al. 2015. An examination of the potential added value of water safety plans to the United States national drinking water legislation. *International Journal of Hygiene and Environmental Health* 218: 677–685.
- 2. Ojomo, E. 2017. Recommendations to improve the WSP manual. (J. Luh, *ed*.) UNC Water Institute. Chapel Hill, NC.
- 3. Omar, et al. (2017). Risk management for drinking water safety in low and middle income countries cultural influences on water safety plan (WSP) implementation in urban water utilities. *Science of the Total Environment* 576: 895–906.
- 4. Kumpel, et al. (In prep). Evaluating Water Safety Plans: Lessons Learned from Assessments in the Asia-Pacific Region.
- 5. Kayser, et al. In prep. Water Safety Plans: Costs and benefits across China, Cuba, France, Morocco and Spain. *Journal of Environmental Management*.
- 6. Amjad, U., Luh, J., Baum, R., Bartram, J. (2016). Water safety plans: Bridges and barriers to implementation in North Carolina. 14(5): 816-826.
- 7. Summerill, C., Pollard, S. J. T., & Smith, J. A. (2010). The role of organizational culture and leadership in water safety plan implementation for improved risk management. *Science of the Total Environment* 408(20), 4319–4327.
- 8. Kot, M., Castleden, H., Gagnon, G.A. (2015). The human dimension of water safety plans: a critical review of literature and information gaps. *Environmental Reviews* 23: 24–29.
- 9. Setty, et al. (2017). Water quality, compliance, and health outcomes among utilities implementing Water Safety Plans in France and Spain. *Int. J. Hyg. Environ. Health* 220: 513–530.
- 10.Gunnarsdóttir, M.J., Gardarsson, S.M., & Bartram, J. (2012). Icelandic Experience with Water Safety Plans. *Water Science & Technology* 65(2): 277–288.
- 11.Takala, A. & Heino, O. (2017). Weak signals and wild cards in water and sanitation services exploring an approach for water utilities. *Eur J Futures Res* 5:4.

Extra Slides

Water Safety Plans, part of the 'Framework for Safe Drinking-Water'', emerged from a ten-year WHO process that began in 1994. They turned around the then-dominant focus on ever faster and more specific testing and on treatmentfocused actions to secure quality. They demanded re-engagement with understanding and tackling the potential sources of and barriers to contamination, rather than reliance on detecting it once it had occurred. In doing so they increased recognition of the need to intervene in catchment and in distribution as well as treatment to secure reliable water safety. For water suppliers, legislators and regulators they represented a fundamental change, which challenged established ways of working. Such radical change was accepted in large part because of a ten-year process of development that involved 490 people from 90 countries; and more than 50 expert and consultative meetings and processes. The result has been a rate of adoption of this approach that is arguably unprecedented for such a policy initiative. That process of adoption has provided opportunities to understand WSP processes and impacts. High quality studies in Iceland, France and Spain have documented beneficial impacts on water quality, compliance with internal and external standards and on health outcomes. The latter, from a high-income country with good infrastructure and high quality underlying resources is noteworthy. These opportunities have also provided insights into factors that support the successful implementation of Water Safety Plans ie what makes them work on-the-ground; and also on the factors associated with their uptake and adoption in policy and regulation.

Shift to Preventive Management

HACCP vs.WSP

- Batch product
- Knock-out step
- Most steps under supplier's control

- Continual service
- Incremental pollution and elimination
- Most steps not under supplier's control
- Both developed to control infectious hazards
 - WSP included chemical consideration

Less-Developed Countries

- In rural applications, need simplified WSP process and community support¹
- Often improves record keeping and service orientation²
- Cost-savings associated with focused monitoring, earlier problem identification, health improvements, reduced water loss and purchases³

Does It Work? (Health)

PHCC	Cs c	combined	No. month data	Mean*	Median*	Percentiles* 5 th and 95 th	Range*
		All 7 PHCCs	358	2 74	1.60	0 30 9 37	20.37
son		before WSP	550	2.74	1.00	0.50, 2.57	20.57
npari		All 7 PHCCS	638	1.88	1.37	0, 4.90	28.52
Con	one	atter wSP					
son		All 7 PHCCs without WSP	895	1.63	1.23	0, 5.16	16.78
ıparis		All 4 PHCCS	517	0 94	0.80	0 11 2 25	4 29
Con	two	with WSP					
Total	18	PHCCs	2408	1.71	1.16	0, 5.35	28.52

Found a 14% reduction in diarrheal incidence in Iceland

Developed Countries

Framework for Safe Drinking Water

WHO, 2004

Sanitation Safety Plans?

- Codependency: Part of protecting source water and distribution system
- Basis in Stockholm Framework

http://www.healthy-mind-body.com/humanitarian/vetiver_latrine.html