How emerging science in Europe is challenging regulatory assumptions for bathing and shellfish harvesting waters

Paul Brewer, John Crowther, Cheryl Davies, Lorna Fewtrell, Carol Francis, Bill Perkins Carl Stapleton, John Watkins, Mark Wyer and David Kay

Promoting Our Region

EUROPEAN REGIONAL DEVELOPMENT FUND

unded by the Irish Government

and the European Union

smart coasts

p & Chymru: Buddsoddi yn eich dyfodo Cronfa Datblygu Rhanbarthol Ewrop Europe & Wales: Investing in your future European Regional Development Fund

Welsh Gover

The Scottish Government

Department for Environment Food and Rural Affairs

Environment

Agency

YorkshireWater

LOW CARBON RESEARCH INSTITUTE MARINE

Environmental Protection Agency

SEPÂ

The Background

Epidemiology 60 km L'hom sea batting realts Southend on-Sea 1992 angla Bay 1989 1.64137 Predicting in an in the second of Bastroontentes in **Guidelines for** South safe recreational water environments DECONTRACT OF THE DECONTRACT AND OF THE CONSERVE from todomised expessive VOLUME 1 COASTALAND FRESH WATERS Henew of epidemiologica sudies on health effects from exposure to recreational water an to the Designation of the state WORLD HEALTH ORGANIZATION GENEVA *aaaaaaaa* Deficiend and and and and and and the state work the state Ì 2222222 W. Matt D. Wyer. PARAMENT AND T A.3.2006 concernit To d the Estopean Econo. to the (REF

UK studies 1989-1992

The WHO Microbiological Guidelines

≤40	This range is below the NOAEL in most epidemiological studies.	<1% GI illness risk <0.3% AFRI illness risk
41 –200	The 200/100 ml value is above the threshold of illness transmission	1– <5% GI illness risk 0.3–<1.9% AFRI illness risk
201–500	This range represents a substantial elevation in the probability of all adverse health outcomes	5–10% GI illness risk 1.9–3.9% AFRI illness risk
>500	Above this level, there may be a significant risk of high levels of minor illness transmission.	>10% GI illness risk >3.9% AFRI illness rate

CREH

The Annapolis Protocol

Norman Lowe DCWW Nick Humphrey DCWW **Peter Bird** EA

6

Spanish Studies

00

1. Study sites

CREH

Epibathe Hungary

The team...

...and their great leader

1. Study sites

Trial 11 Dömsöd, 16 JUL 06 Trial 14 Tiszakécske, 5 AUG 07

Trial 12 Dombori, 13 AUG 06 Trial 13 Csongrád, 1 JUL 07

Epibathe Combined Marine Data UK and Spain

- More illness in bathers with lower exposure to FS.
- Very different illness rate in non-bathers
- Risk difference very different between UK and Spanish studies
- But Relative Risk/Odds Ratio are similar between UK and Spanish studies

Model outputs for a marine bathing water with 95%ile 100 IE BWD Excellent

Attributable disease incidence 3.5%

EU BWD was 3% (based on Kay et al., 1994, 2004)

Model outputs for a marine bathing water with 95%ile 200 IE BWD Good

Attributable disease incidence 4.5%

WHO/ EU 2006 assessment was 5.0% (based on Kay et al., 1994, 2004)

Model outputs for a marine bathing water with 90%ile 185 IE BWD Sufficient

Attributable disease incidence 5.3%

EU BWD 2006 was 8.4% (based on Kay et al., 1994, 2004)

Virobathe Viroclime

5 river basins within 5 different countries

Virobathe/Viroclime

Conclusion

Improvement on the inter-laboratory reproducibility of virological data generated by qPCR would be needed before such data could be used in a regulatory context having legal force.

Outcomes

		4.3.2006	EN	Official Journal of	the Eur	opean Union	L 64/37		
WHO/HSE/WSH/10.04		DIRECTIVE 2006/7/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL							
				of 15 Febr	ruary 2	2006			
		ity and repealing Directive 76/160/EEC	EC						
Organization		THE EUROPEA EUROPEAN UN Having regar Community, a	AN PARLIAMENT ANE NON, d to the Treaty es and in particular Artic	THE COUNCIL OF THE tablishing the European le 175(1) thereof,	(4)	In December 2000, the Commission adopted munication to the European Parliament and the on the development of a new bathing water pc initiated a large-scale consultation of all intere involved parties. The main outcome of this con was general support for the development of Directive based on the latest scientific evide paying particular attention to wider public parti	a Com- Council slicy and sted and sultation a new nce and cipation.		
		Having regard	to the proposal from	the Commission (1),					
ADDENDUM TO THE	N	Having regard Social Commi	to the opinion of the ittee (²),	European Economic and	(5)	Decision No 1600/2002/EC of the European Pa and of the Council of 22 July 2002 laying down Community Environment Action Programme	rliament the Sixth (⁵) con-		
		Regions (3),				protection of bathing water, including by Council Directive 76/160/EEC of 8 Decemb	revising er 1975		
WHO GUIDELINES FOR SAFE RECREATIONAL WATER ENVIRONMENTS,		Acting in ac Article 251 o approved by	cordance with the of the Treaty (4), in the the Conciliation Con-	procedure laid down in ne light of the joint text nmittee on 8 December		concerning the quality of bathing water (*).			
VOLUME 1, COASTAL AND FRESH WATERS		Whereas:			(6)	Pursuant to the Treaty, in preparing policy environment the Community is, <i>inter alia</i> , to take of available scientific and technical data. This should use scientific evidence in implementing reliable infector nearwater for predicting reliable	preparing policy on the s, inter alia, to take account hnical data. This Directive in implementing the most		
LIST OF AGREED UPDATES		 Building sustainab singled developn and publ 	on the Commissio le development, the out objectives as ger nent in priority areas lic health.	n's Communication on European Council has eral guidance for future such as natural resources		Iclain altractory parameters for producing inte gical health risk and to achieve a high level of pr Further epidemiological studies should be un urgently concerning the health risks associat bathing, particularly in fresh water.	otection. dertaken red with		
	5	(2) Water is should b such. Sur with a lin from hur	a scarce natural reso e protected, defended face waters in particul mited capacity to reco nan activities.	rrce, the quality of which , managed and treated as ar are renewable resources ver from adverse impacts	(7)	In order to increase efficiency and wise use of rr this Directive needs to be closely coordinated wi Community legislation on water, such as Directives $91/271$ [EEC of 21 May 1991 co urban waste-water treatment $\langle \hat{\rho}_1, 91 \rangle 6761$]	esources, ith other Council ncerning EEC of		
		(3) Community high level objectives quality of health.	nity policy on the env el of protection, and c s of preserving, protection of the environment a	ronment should aim at a ontribute to pursuing the eting and improving the nd of protecting human		against pollution caused by nitrates from ag sources (*) and Directive 2000/60/EC of the E Parlament and of the Council of 23 Octob establishing a framework for Community actio field of water policy (*).	ricultural auropean er 2000 n in the		

Where do we need to be?

Real-time prediction of bathing water

(1.5-5.4 billion UK£ and we keep present Blue-Flag numbers) black box hydrodynamic

Mitigation strategies for agricultural BMPs

(WFD Article 11 POMs for 'Annex 4 protected areas)

But Why does the UK need all this Modelling?

COSTS £m	From	То	
Good	3163	4858	
Excellent	4999	7818	
Three Events	1621	2443	
SAVINGS £m			
Good	1542	2415	
Excellent	3378	5375	

	NPV of total benefits	NPV of total costs	
Option 1	0	9-14	
Option 2a	1104-1923	3163-4858 ~Good	
Option 2b	1638 - 3497	4999-7818 Excellent	Ir
Option 3a	2215	2530-3846 One event	l l i
Option 3b	2215	1621-2443 Three events	

Does not include CSOs improved to one spill/season

Development and use of modelling techniques for real time **Scottish Approach**

(Calum McPhail and Ruth Stidson, SEPA)

ware and conconnectional. Prof. 153

Development and use of modelling bathing water quality predictions

PIS, EU Ball

R. Taldoon C.A. Goy & C.D. Norhold

Agency

Absted. maladon & halfing and caller is solared as an appendic

Problems (outwith Scotland)

- Model calibration data
 - 'Bathing Day' is the modelling unit
 - Spot compliance samples provide the calibration data
 - **Diurnality** introduces variation and increase model error reducing explained variance
 - Censored data (< and >) and measurement imprecision in cfu and/or MPN counts would further reduce model utility
 - Data precision?

Table 5.1 Estimated count and 95% confidence intervals for the number of organisms in a 100 ml sample, where, after dilution, a subsample is examined

Organisms observed	10-fold	dilution	100-fold	100-fold dilution		
in the subsample	EC	CI	EC	CI		
10	100	50-180	1000	480-1830		
50 100	500 1000	380-650 820-1200	5000 10000	3750-6640 8190-12200		

EC = estimated count.

CI = 95% confidence interval.

Source connectivity – tracer studies

Microbial tracers introduced to inputs

Source dosing - river

Source dosing - offshore

Hourly sea sampling for 54 hours following tracer release

Diurnality of FIO Concentrations

Diurnal pattern of low concentrations corresponding with afternoon rising tidal levels

YorkshireWater

Solutions

Ireland's EU Structural Funds Programmes 2007 - 2013 Co-funded by the Irish Governmer

EUROPEAN REGIONAL DEVELOPMENT FUND

- Characterise the 'bathing day' water quality for model building
 - multiple sampling events during daylight
 - 07:00 to 19:00
 - Measure FIOs with enhanced accuracy through the bathing day
- CARDIFF UNIVERSITY PRIFYSGOL CAERDYD
- Triplicate enumeration / >100+ml filtered

Environment

Sample collection

Sample collection

DSP intensive sampling

ogrammes 2007 - 2013

Co-funded by the trish Government and the European Union

EUROPEAN REGIONAL

DEVELOPMENT FUND

SOUTHERN & EASTERN

Regional Assembl

IRELAND WALES

2007 - 2013

E.coli (cfu/100 ml)

Faecal indicator bacteria concentrations at the compliance point of Bray Beach Summer 2011

UCD Data from Bray Beach

(reproduced with permission of Prof Wim Meijer)

Confirmed enterococci – Model 1

Model 1 - Tolerance 0.0001								
Dependent (Y): Mean log ₁₀ Confirmed enterococci (cfu/100 ml)								
Step	Predictor		<i>r</i> ² (adj.)	Change in <i>r</i> ² (%)	Partial <i>r</i>	Sig.	Toleranc e	
1	UVB Radiation on sampling day (kJ/sq. m)	<i>X</i> ₁	0.440					
2	Log ₁₀ Brynmill Str. Max. Q in previous 48 Hrs (cub. m)	<i>X</i> ₂	0.589	14.894	0.528	0.000	0.916	
3	Max. Tide Height on sampling day (m)	<i>X</i> ₃	0.643	5.455	0.385	0.003	0.934	
4	Log ₁₀ Afan STW Q in previous 48 Hrs (cub. m)	<i>X</i> ₄	0.686	4.250	-0.368	0.006	0.509	
5	Mean Wind Sp. in previous 48 Hrs (m/s)	<i>X</i> ₅	0.742	5.615	-0.441	0.001	0.686	
6	Min. Tide Ht. in previous 12 Hrs. (m)	<i>X</i> ₆	0.775	3.329	0.382	0.005	0.081	
7	Log ₁₀ Clyne R. Gauge Q in previous 24 Hrs (cub. m)	<i>X</i> ₇	0.801	2.606	0.365	0.008	0.351	

 $Y = 10.551 - 0.038X_1 + 0.440X_2 + 0.522X_3 - 2.992X_4 - 0.236X_5 + 0.366X_6 + 0.405X_7 \pm 0.229$

Intestinal enterococci

7 predictors

Intestinal enterococci

7 predictors r² 80.1%

FIO Diurnality

- UV Irradiance is the main predictor
- Temporal pattern examination prudent
- Two sets of comparisons were made:
 - 61 days (10/05-28/09/2011), split into 07:00-11:00 and 11:30-16:00 groups – Student's t-test
 - 24 days (18/07-07/09/2011), split into 07:00-11:00, 11:30-15:00, and 15:30-19:00 groups - ANOVA

All samples – 61 days

smart coasts

Geometric mean ±95% CI

Compliance outcomes – All days

Period (GMT)	rBWD <i>E. coli</i> Outcome	rBWD enterococci Outcome	rBWD Overall Outcome	
07:00-11:00	Sufficient	Poor	Poor	
11:30-16:00	Good	Sufficient	Sufficient	

On average the AM/PM difference in FIO concentrations is enough to affect the compliance outcome – which improves in the afternoon

smart coasts

24 days with 07:00 - 19:00 data

rt **coas**

Geometric mean ±95% CI

Compliance outcomes – Days with 07:00 to 19:00 data

Period (GMT)	rBWD <i>E. coli</i> Outcome	rBWD enterococci Outcome	rBWD Overall Outcome	
07:00-11:00	Sufficient	Poor	Poor	
11:30-15:00	Good	Sufficient	Sufficient	
15:30-19:00	Sufficient	Poor	Poor	

On average the difference in FIO concentrations is enough to affect the compliance outcome for the 3 periods

smart coas

Hourly Compliance outcomes – all data

Hour (GMT)	rBWD <i>E. coli</i> Outcome	rBWD enterococci Outcome	rBWD Overall Outcome	
07:00	Sufficient	Poor	Poor	
08:00	Sufficient	Poor	Poor	
09:00	Sufficient	Poor	Poor	
10:00	Good Poor		Poor	
11:00	Good	Sufficient	Sufficient	
12:00	Good	Sufficient	Sufficient	
13:00	Good	Sufficient	Sufficient	
14:00	Good	Good	Good	
15:00	Sufficient	Sufficient	Sufficient	
16:00	Sufficient	Poor	Poor	
17:00	Sufficient	Poor	Poor	
18:00	Sufficient	Poor	Poor	
19:00	Sufficient	Poor Poor		

Compliance outcome changes through the sampling day

smart coas

Model performance tested against a new data set collected in 2014

'no deterioration in performance'

But is Swansea an anomaly?

Cemaes Bay Results – to August 2017 Dr Mark Wyer

Uywodraeth Cymru

Cronfa Datblygu Rhanbarthol Ewrop European Regional Development Fund

Spatial results DSP - E. coli

E. coli concentration (cfu/100 ml) at Cemaes DSP and level (m) at Traeth Bach stream gauge

Enterococci concentration (cfu/100 ml) at Cemaes DSP and level (m) at Traeth Bach stream gauge

Cemaes Bay - 5th September 2017

UKEF

Tentative Conclusions

- Spot (compliance) measurements cannot index the 'bathing-day' risk even on the day.
 - Decisions to post or close a beach should not be based on the concentration of indicator bacteria in a single grab sample. (Boehm et al., 2002)
 - The results of this study show that single samples do not adequately characterize the quality of beach waters and that temporal variability must be given serious consideration when developing sampling plans for beach waters. (Wymer et al., 2007)
- Bathing season compliance data may (will?) exhibit significant bias and not index bather health risk
- Compliance data are unsuitable for black box, and possibly, hydro-dynamic model calibration.

smart coasts

Can hydrodynamic models approach the MLR explained variance?

Model comparison data

- 76-day numerical model run period: 16 Jul-30 Sep 2011
 - Covering the quantitative microbial source apportionment (QMSA) period providing faecal indicator organism flux estimates for inputs to Swansea Bay
 - Input sequences for: rivers, streams and continuous and intermittent discharges from sewerage infrastructure
- Intensive (half hourly) sampling on 33 days at Swansea Bay designated sampling point (DSP)
 - 3 days per week 18/07/2011 28/09/2011
 - 07:00 to16:00 GMT on all 33 days 19 samples per day
 - 07:00 to 19:00 GMT on 24 days (18/07/2011 07/09/2011) -25 samples per day
 - Triplicate analysis to improve measurement precision
- Parallel output from "Black Box" statistical model used for prediction at Swansea Bay DSP

Numerical model data

- The comparison focused on intestinal enterococci (IE)
 - related to probability of gastrointestinal illness (pGI)
 - is the parameter predicted by the Black Box model
- Two IE data sets were extracted from the model output:
 - closest of a matrix of 50 model grid points to observed sampling events spatially and temporally: "closest point"
 - closest of 29 model grid points along a transect line* to observed sampling times: "DSP transect"

* Line fitted to > 1200 sampling points

Calibration Data available

Sea-bed Mounted ADCP studies

ADCP Deployment

Vessel Mounted ADCP studies

SIMRA

H

HONDA

HEETAH

Typical ADCP Data (Black Tar Point Milford Haven)

Multiple Synchronous Microbial Tracer Releases as Model Verification and Calibration Tools

Evaluating short-term changes in recreational water quality Evaluating short-term changes in recreational water quality

during a hydrograph event using a combination of microbiology, microbial sources

tracers, environmental microbiology, microbial sol

Southwest Wales, UK

Mark D. Wyer a... Inathan porter d' David Kay a John Watkins b Cher.

Sampling: Langland

Sampling: Swansea Bay

Sampling: Swansea Bay

A long way to the sea!

smart coasts

Sampling: Margam Sands

A 2 metre sail depth drogue being released

Rayma

650

IRELAND WALES 2007 – 2013

SUZUKI

Two pairs of drogues released 20 minutes apart off Mumbles Head near Knab Rock SPS

Drogue tracks 27th June 2011 Release ~3 hours before High Water Pink and Orange 2m sail depth Yellow and Green 1m sail depth

Note :

Both 2m sail depth drogues head from the Afon Tawe mouth towards the BWD DSP

Both 1m sail depth drogues head towards Mumbles Head

Pink Yellow Green Orange 2m sail

1m sail

1m sail

2m sail

release 13:23-18:12 BST release 13:26-20:24 BST release 13:42-20:26 BST release 13:45-19:05 BST

Swansea Bay DSP - Closest Point Grid

Swansea Bay - DSP Transect

Measured – Individual samples

Variation in IE concentration within each sampling day Observed and modelled IE concentrations showed a better approximation to normality when log₁₀ transformed

smart coasts

Modelled – Closest Point

Modelled – DSP Transect

Overall Statistics (cfu/100 ml)

Source	Geo. Mean	L95%C I	U95% Cl	SD ^a	Min.	Max.	
Observed	43	38	48	0.658	3	4333	770
Closest point	39	36	44	0.632	2	3198	771
DSP Transect	44	40	49	0.601	3	2534	771

a. Standard deviation of log₁₀ IE concentrations

Model showed similar GM to that observed – no statistically significant difference SD and ranges were also similar

Pairwise comparisons – Closest Point

Statistically significant but weak +ve correlation No apparent positive trend

Pairwise comparisons – DSP Transect

Statistically significant but weak –ve correlation No apparent positive trend

But MLR is only Association NOT Causation

Confirmation of Connectivity

02:00 08:00

Results Swansea - DSP

Brynmill Enterobacter tracer arrived at 3.2 hrs – peak at 3.5 hrs Clyne Serratia River tracer arrived at 7.6 hrs - peak at 9.2 hrs Max MS2 coliphage (Tawe) = 12 pfu/ml - 47.9 hrsKnab Rock Max *B. atrophaeus* = 2 cfu/100 ml – 44.2 hrs

eland's EU Structural Funds rogrammes 2007 - 2013

Wider use of the tracer approach

CREE

Aberystwyth to Aberdyfi tracer Study 8th to 10th Feb 2016

8th February 2016

Tan-y-Cae Pumping Sta. Aberystwyth Marina tracer insertion

Hourly sampling at Aberystwyth South Beach for 54 Hours post-tracer release

Results

- MS2 coliphage tracer released at Tan-y-Cae PS which discharges into Aberystwyth Harbour (10¹⁷ pfu)
- Wind peaking at Bf 10 WSW
- Phage located at
 - Tanybwlch Beach
 - Aberystwyth S
 - Aberystwyth N
 - Borth
 - Aberdyfi
 - Tywyn

3.00hrs 2.25hrs 2.25hrs 9.02hrs 13.10hrs 17.37hrs 140,800 pfu/ml 36,000 pfu/ml 10,100 pfu/ml 1,960 pfu/ml 390 pfu/ml 676 pfu/ml

CREH

T₉₀ values and microbial Decay

Decay of intestinal enterococci concentrations in high-energy estuarine and coastal watere: towards real-time To values for Decay of infestinal enterococci concentrations in nigheenergy estuarine and coastal waters: towards real-time Too values for modaling factoric in recreational water

modelling faecal indicators in recreational waters

D. Kaya,*, C.M. Stapleton^a, M.D. Wyer^a, A.T. McDonald^b, J. Crowther^c, N. Paul^d, K. Jones^d, C. Francis^e, J. Watkins^e, J. Wilkinson^a, N. Humphrey^a, N. Paul^d, K. Jones^d, C. Francis^e, R.A. Falconer^f, S. Gardner^g

WATER RESEARCH

www.dsevier.com/locate/watres

Light rig

Mixture of visible (metal halide) and UV lamps

T₉₀ experiments: Freshwater

R. Ribble, Ribchester

R. Darwen, Blue Bridge

T₉₀ Experiments

smart coasts

Range of T₉₀: Freshwaters

	Irradiated T ₉₀ (hours)	Dark T ₉₀ (hours)	Turbidity (NTU)
E. Coli	4.1 — 43.4	23.5— 829.6	2 — 30.2
Confirmed Enterococci	4.4 — 65.3	32.2 — 279.6	1.5 — 39.3

Turbidity during field surveys 10/7/12 – 2/9/12

<u>Ribble, Ribchester:</u> Average: 49 NTU; Maximum 220 NTU

Darwen Blue Bridge Average: 30 NTU; Maximum 130 NTU

Range of T₉₀: Seawater

Swansea and Severn	Irradiated T ₉₀ (hours)	Dark T ₉₀ (hours)	Turbidity (NTU)
E. Coli	1.3 — 2.5	3.1 — 44.0	1.5 — 290
Confirmed Enterococci	3.5 — 5.1	6.3 — 84.0	1.5 — 290
EA [†] (Fate & Transport)	Irradiated T ₉₀ (hours)	Dark T ₉₀ (hours)	Turbidity (NTU)
Presumptive			

* Swansea samples: Swansea DSP, Mumbles Pier, Mumbles Slip, Black Pill

[†] EA and LCRI Fate & transport samples: Beachley Penarth, Porthcawl, Minehead, Langland

Environm Agency

Ising science to reate a better place ate and transport of particles in estuarie lume !: summay and corclusions was Report SCORDERT!

Relationship with turbidity & s. solids – saline & brackish T₉₀

99% of incident radiation absorbed in first 1cm of optical path through the water column at 200 NTU (Joyce *et al.*, 1996)

Environmen

What of Sediment Sources?

Severn Estuary Results

E. coli in sediment by location

Bridlington Harbour FIO Investigation

December 2011 to April 2012

YorkshireWater

YorkshireWater

13th December 2011

Results

Sediment near Gypsey Race

Remainder of Harbour

GM E. coli16,698 /100gGM IE42,679 /100gGM E. coli3,409 /100gGM IE10,583 /100g

Water GM 8 GM 1,0 GM 1 GM 1

GM 859 /100ml GM 1,081 /100ml GM 190 /100ml GM 173 /100ml

Importantly, a speciation study indicated 'intestinal enterococci, the elevated concentrations were therefore compliance relevant and not indicative of environmental strains re-growing in the sedimentary environment

BMPs Catchment Control efforts do they work for FIO flux?

Further information, reports and papers email to dave@crehkay.demon.co.uk