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ABSTRACT  

Water suppliers are constantly seeking techniques to improve the quality of their services 

and reduce operational costs. This is traditionally done through ensuring that the water 

infrastructure is maintained regularly by performing routine maintenance and responding 

to faults within the infrastructure. Operators would usually discover a fault, analyse the 

data and respond accordingly, in a “reactive” manner. Although these techniques work, 

they mainly rely on human intervention which can sometimes be inefficient, slow and 

potentially costly. In addition, water suppliers generally follow a reactive approach to 

energy consumption, where potential savings are lost due to not taking external factors 

into account.  

 

Artificial intelligence (AI) systems utilise real-time and historic data to optimise 

operations in terms of cost and quality, potentially making the water industry more 

“proactive”. Current AI systems can significantly reduce the response time to unusual 

events or faults, predict faults and learn how to respond in future occurrences. These 

systems can also produce maintenance schedules and assign their priority based on 

predicted outcomes.  

 

Another major benefit is the ability to optimise operations to save on energy costs based 

on various sources of data such as weather reports and electricity suppliers’ charges, 

creating the ability to estimate the optimal balance between reducing energy 

consumption and maintaining the required storage volumes for peak demand. Such 

systems would significantly reduce the cost of operations whilst ensuring a sufficient 

reserve.   

 

This paper will investigate existing applications of AI in the water industry, specifically 

those that are scalable, practical and require minimum change to existing systems. In 

addition, real-world examples of AI implementation in the water industry will be 

discussed with the emphasis on lessons learnt. Finally, this paper will showcase platforms 

data collected by SCADA and historian systems to be converted into “smart data”, 

enabling water suppliers to utilise the latest AI technology at relatively small costs.  
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1 INTRODUCTION  

Water utilities are continuously faced with growing demand for water resources as the 

world population grows. In addition, they have to overcome aging infrastructures and 

lack of funding for operations and maintenance while maintaining the quality of their 

service (Corporation, 2015).  

 

Although the majority of the existing water infrastructure is monitored in real-time, 

producing large amounts of data, it still requires human intervention to understand and 

analyse the acquired data. Relying on operators’ intuition and experience to process, 

analyse and forecast operational changes could lead to errors and delays, which can 

result in damaged equipment, lower efficiency and eventually compromised quality of 

service.  

 

When it comes to maintenance, water utilities mostly rely on either reactive or preventive 

strategies. Reactive maintenance is only performed after equipment has failed, and 

therefore it is classified as failure-based strategy. On the other hand, preventative 



maintenance is performed regularly based on time or usage of an equipment even if the 

equipment is not close to failure.  

 

Water utilities often only rely on internal acquired data for operation and maintenance 

purposes, leaving a huge amount of data sources that can improve the decision making 

process. External data sources such as weather, water consumption forecasts based on 

population, energy rates and infrastructure health would optimise both the operations 

and maintenance of water treatment plants. But as aforementioned, such massive 

amount of data cannot possibly be analysed by humans which creates the need for other 

systems such as artificial intelligence.  

 

Artificial intelligence (AI) is defined as the mimicking of humans cognitive functions by a 

machine, such as problem solving, learning and reasoning. A subcategory of AI is 

machine learning (ML), which is a field of computer science that allows machines to learn 

to perform certain tasks without being explicitly programmed (Munoz, n.d.). There are 

different levels of AI, some of which will be discussed.  

 

This paper will investigate existing applications of AI in the water industry, specifically 

those that are scalable, practical and require no change to existing systems. In addition, 

real-world examples of AI implementation in the water industry will be discussed with the 

emphasis on lessons learnt. Finally, this paper will showcase the process of converting 

data collected by SCADA and historian systems into “smart data”, enabling water 

suppliers to utilise the latest AI technology at relatively small costs.  

2 DISCUSSION 

2.1 WHAT DOES ARTIFICIAL INTELLIGENCE MEAN? 

Although scientists have been contemplating the thought of machines being able to think 

on their own for a long time, the term “Artificial Intelligence” was officially introduced in 

early 1950’s, when the first conference on AI was held by John McCarthy (Smith, n.d.). 

AI can be broken intro two segments, Artificial General Intelligence (AGI), and Artificial 

Narrow Intelligence (ANI). AGI ultimate goal is to create a machine to imitate humans’ 

actions sufficiently that a judge would not be able to tell the difference between an actual 

human and the machine, also known as the Turing test (Smith, n.d.). For various reasons 

such as the lack of computational hardware and funding allocated to AI, no machine has 

successfully passed the Turing test yet.  



Artificial Narrow Intelligence (ANI) is defined as the ability to perform certain pre-defined 

tasks efficiently while learning and adapting. Examples of ANI include learning algorithms 

that are being used around the globe in applications such as Apple’s intelligent assistant 

Siri and Tesla’s self-driving cars. Self-driving cars have been a far-fetched reality for a 

few decades; however, companies such as Google and Tesla are making that a reality 

with almost 3 million miles being self-driven (Waymo, 2017). Driving in itself is a 

complicated act, for a self-driving car to function safely it would have to sense the 

surrounding, deal with unexpected encounters, understand and analyse human 

intervention, and offer reliability and security. These functions are comparable to the 

operation of a wastewater treatment plants, as shown in Table 1. This goes to show that 

AI techniques can be applied to a wide range of industries and applications. 

Table 1: Comparison between self-driving car’s functionality and a waste water treatment plant.  

Situation Self-Driving Car Waste Water Treatment Plant 

Sensing of surroundings Bikers, road marking, other cars Raw wastewater intake is 

measured for Flow, DO, Nitrate, 

pH, Ammonia and COD. 

Dealing with unexpected 

encounters 

Sudden road situations, pedestrians, 

bikers and cars suddenly appearing 

in front of the car 

Unexpected dumping of waste, 

floods and storm water 

Understanding and acting 

upon human intervention 

Drivers’ intervention Operators’ intervention 

Offering reliability and 

security 

Secure against cyber-hacks, offers 

redundancy 

Secure against hackers, vandals, 

human errors  

 

In the 1980s, business applications of AI were trialled, but did not succeed. But due to 

the reduction of hardware prices, the increase of computing power, and the vast amount 

of learning data available nowadays, AI has become business-ready. In addition, the rise 

of AI platforms has made it easy for business to utilise the power of AI without bearing 

the costs of hiring specialist staff. There has also been an increase in awareness of 

current AI research and its capabilities across industries. Another major motivator for AI 

implementation is the rise of open-source, web-based AI platforms such as Google 

Tensorflow, Amazon Artificial Intelligence Services and IBM Watson (Economist, 2016). 

Such platforms allow developers to create their instance of an AI algorithm, train the 

algorithm with relevant data and then eventually create their own applications. 

 

As aforementioned, AI’s advantage lies in its ability to analyse, learn and infer from large 

volumes of data. Therefore, it is essential access to large amounts of data sets for any AI 



system to function effectively. This data could come from local sources such as 

supervisory control and data acquisition (SCADA) and historian, or from external sources 

such as the internet. For a waste water treatment plant, a relatively large amount of data 

is being collected by instruments from both influent and effluent streams. For the last 

three decades, SCADA systems have been implemented in water and wastewater plants 

to facilitate an interface between plant operators and the machinery. Such systems 

acquire data from across the plant and the network, creating and storing large data sets 

of time-stamped readings. Although this data has the potential to support improving 

operations and decision making process for those plants, it rarely gets used. This is due 

to the inherent design of historian infrastructure which has been optimised for write 

access with limited search or analytics functionality. But such systems provide rich 

environment for AI, where AI applications can be used as an add-on to extract the data 

from historians, process it and make sense of it. In addition, many AI platforms take into 

consideration external factors such as weather condition, energy tariff as well as any 

other 3rd party relevant information. An ideal model for an AI platform implemented 

within a waste water treatment plant is shown in Figure 1. Two major aspects that AI 

would optimise have been identified to be operational costs savings and predictive 

maintenance.  

Figure 1: A schematic diagram of an AI platform implementation within a typical waste water treatment plant. 

(Diagram based on Baxter, 2001) 

 



2.2 OPTIMISING OPERATIONS 

In a survey done by the Economist, 49% of business leaders believe that AI will have 

moderate impact on their organisation in the next five years, while 20% expect little or 

no impact at all (Economist, 2016). There are many reasons why managers and 

executives, especially non-technical, might perceive AI as a concept rather than a tool. 

Building a viable business case requires understanding of the technology and its 

applications and limitations is a challenging task. In addition, the technology itself has not 

matured yet which makes it hard to invest large amounts of capital especially when there 

are no standards or guidelines around AI functionality. Therefore, implementing AI into 

businesses must be done on smaller scale at first, with clear and measurable milestones 

and on applications that allow for immediate optimisation. Two of the most suited 

applications of AI in the water industry are energy consumption and predictive 

maintenance.  

2.2.1 AI APPLICATIONS IN POWER CONSUMPTION 

In the water industry, energy is required throughout the processes of water production 

and distribution. Energy was not regarded as a place for operational cost savings; 

however, with the rise of energy prices, it became a main concern to water utilities 

regardless of their size or location. To put this in perspective, water utilities consume 

around 3% of all electrical energy consumption in the United States and United Kingdom. 

Pumping water takes between 90% and 95% of the electricity purchased (Bunn & 

Reynolds, 2009). The slightest improvement in pump efficiency will still achieve a huge 

amount of savings and reduce carbon emissions. 

Pump reconditioning can be very effective in reducing operational costs, but operators 

and managers often lack the supporting evidence to back instituting preventative 

maintenance programs to optimise pumps efficiencies. However, there are companies 

such as AEMS Ltd. that specialise in pump energy management. In a study carried out by 

AEMS, a pump which has been in operation since 1963, with over 100,000 hours without 

any major maintenance had its efficiency raise from 70% to 82%. The process cost 

$20,000, but it saved $26,000 of operational cost per year, giving a 9 months’ pay back 

period (Bunn & Reynolds, 2009). 

Previous work has been done in terms of analysing individual pumps and matching pump 

characteristics to specific requirements for the duties of the pumps. The fundamental flaw 

behind those approaches is assuming that each pump runs at a single pressure and flow 

operating point. As water treatment plants become more complex and interconnected, 

pumps seldom operate in isolation. The use of variable speed drives (or inverters) is also 



becoming more common. So in order to capture all those interdependencies, a dynamic 

system is required to capture the performance of all the pumps and schedule their 

operations to optimise energy savings. 

There are few methods that have been developed to understand and coordinate pump 

scheduling in order to optimise their operations. The majority of such system leverage 

the time-of-use tariff technique to minimise overall energy costs related to pumping. 

Water suppliers have the ability to offset the bulk of the pumping to off-peak hours where 

energy cost is lower. Existing solution are mostly based around reducing the associated 

cost of pumping for a small set of pumps. Additional techniques such as reducing the 

frequency of pump start and stop to minimise pressure surges or optimise the treatment 

process to avoid peak-hour charges exist, but have not been implemented widely. 

A platform that has been successful in using machine learning is Aquadapt. This platform 

collects and stores existing plant data along with virtually generated data based on a 

calibrated model to build large data sets of mixed real and virtual data. This data is then 

used by an optimisation algorithm to highlight useful operational information such as 

inefficient pumps. This information is hugely beneficial for maintenance and replacement 

optimisation. But the platform does not only rely on operators’ response, it encompasses 

an automatic pump scheduler that minimise energy costs while taking into account the 

most suitable pumps to operate, time of day and predicted load. Implementing the 

Aquadapt platform has achieved energy savings of 10-20% for East Bay MUD and 

Eastern Municipal Water District in California, Washington Suburban in Maryland and 

WaterOne in Kansas (Bunn & Reynolds, 2009). 

 

2.2.2 PREDICTIVE MAINTENANCE  

There are two well-known strategies for maintenance, reactive and preventative. 

Reactive maintenance has the advantage of lower short-term savings, but it can lead to 

higher cost of repair and longer down-time in the long run. On the other hand, 

preventative maintenance achieves higher reliability but it has the disadvantage of being 

more costly if maintenance is performed without being needed (Levitt, 2011). A strategy 

that would achieve both reliability and reduced costs is preventative maintenance. 

Preventative maintenance is defined as condition-based approach where machines are 

only maintained when they actually require it prior to failure, as shown in Figure 2. It also 

enables operators to plan for failures ahead of time, therefore reducing down-time and its 

associated cost.  

 



 

Figure 2: A diagram explaining predictive maintenance and how it compares to regular maintenance. 

(Diagram based on Levitt, 2011) 

 
 

 

In order to efficiently implement predictive maintenance and anticipate equipment failure, 

a large amount of historical data sets is required along with equipment logs. Equipment 

logs typically contain thousands of events entries based on their pre-set time resolution. 

These events contain error codes, time of occurrence, event category and unstructured 

text messages. Typically an experienced operator would manually scan the data and find 

patterns and anomalies. This process is both time consuming and inefficient, as it would 

take a significant amount of time to go through the large amount of data being collected 

for one machine.  

Advanced predictive maintenance platforms utilise already existing data for predicting 

equipment failures without the need for human intervention. Such platforms are typically 

divided into three segments, data acquisition, analysis and knowledge management and 

maintenance dashboard. The data acquisition segment deals with extracting data from 

existing SCADA and historian systems and processing it. The second segment is 

dedicated to modelling data and comparing equipment state with previously recorded 

states to detect any patterns that may cause failure. The third segment focuses on 

displaying meaningful data to operators through dashboards. An example of a predictive 

maintenance packages is IBM’s Predictive Maintenance and Quality tool (PMQ), which is 



based on IBM’s AI platform IBM Watson. PMQ helps organizations predict the timing and 

reason behind failures, as well as identifying poorly performing assets (IBM, n.d.). The 

PMQ tool provides operators with a simple to use dashboard that contains a health score 

for each machine, which makes it simple to identify poorly performing equipment and 

maintain them. The District of Columbia Water and Sewer Authority (DC Water) recently 

implemented IBM PMQ to optimise the maintenance process of their aging infrastructure 

and increase the reliability of their system. The platform offered near real-time 

information on potential issues and occurrences, based on a variety of information such 

as location, time, weather data and historical data. The results were promising with 36% 

reduction in customer complaints due to less asset downtime, as well as almost doubling 

the number of emergency investigation dispatched with 10 minutes. In addition, 

regulatory compliance reports were generated by the AI platform in seconds instead of 

days (IBM, 2010).  

2.3 THE MOVE TO AI 

2.3.1 AI PLATFORMS 

There are a large number of AI platforms that are designed to take unstructured 

historical data as input and aid with optimising the performance of water and wastewater 

treatment plants. Table 2 highlights some of those platforms. It is important to note that 

slight differences between platforms could affect the result of implementation, as 

different platforms are targeted at certain fields. 

Table 2: Comparison between different AI platforms for different water and wastewater 

applications.  

AI Application Platforms 

Predictive Maintenance IBM PMQ, SAP, Cisco, Intel, Siemens, Microsoft, GE, 

ABB, Huawie 

Reducing Energy Costs & 

Consumption 

Aquadapt, Pluto AI 

Forecasting Intake, finding 

leaks underground 

Pluto AI, H2O 

 

In order to choose a suitable platform, it must satisfy all if not the majority of the 

following requirements:  

 A non-intrusive data acquisition system. Allows information gathering from existing 

SCADA and historian systems without alternating them.  



 A decision support system to provide real-time management recommendations.  

 Include an interoperable hydraulic modelling capability to simulate the network 

behaviour, assess recommendations and analyse measured and simulated 

information.  

 An events detection system to detect patterns, anomalies and to alert operators 

and managers about events whilst recommending solutions in real-time.  

 Simple to use dashboards for KPI tracking. The dashboard would ideally include 

water resource, physical, operational or economic indicators.  

3 RECOMMENDATIONS 

The following points could aid with achieving a successful outcome when implementing AI 

into water and wastewater treatment plants: 

 Identify an area within your treatment plant that requires immediate optimisation. 

 It is very important to understand that no optimisation can be done without 

monitoring, so make sure your existing infrastructure is monitored sufficiently. 

 Set a reasonable return on investment and other relevant KPIs to measure the 

success of implementation. 

 Utilise existing SCADA and historian data and run a trial leveraging free AI 

platforms. 

 Perform a technology assessment to identify the most suited platform. This could 

be done through partnership with vendor agnostic consultants. 

 Run a small scale pilot study (bearing in mind the fail fast technique). 

 Partnership with the chosen vendor for the pilot study. 

 If successful, consider expanding the same platform to service other areas within 

your plant. 

 Explore the use of Internet of Things (IoT) sensors in providing more data into the 

system. 

4 CONCLUSIONS  

Artificial intelligence has many use cases in almost every industry nowadays. Most of the 

existing water infrastructure is monitored, and the collected data often goes into a 

SCADA or historian system where it does not get used. Artificial intelligence has big 

potential at making sense of the acquired data, turning it into informative tools for 

operators and decision makers. This paper defined artificial intelligence, investigated 

existing applications of AI in the water industry, specifically reducing power costs and 

predictive maintenance. In addition, real-world examples of AI implementation in the 

water industry were discussed with the emphasis on the platforms used and lessons 



learnt. Finally, this paper will showcase the process of converting data collected by 

SCADA and historian systems into “smart data”, enabling water suppliers to utilise the 

latest AI technology at relatively small costs. 
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