

Turning the Water Industry into Energy Neutrality + low water leakage Water New Zealand Conference & Expo, 21 of Sept. 2017

Global Director & GKAM, Mads Warming, Water & Wastewater

Danfoss headquarter in Nordborg, Denmark

Danfoss Drives

2 | Department (slide master)

ENGINEERING TOMORROW

Danfoss Drives has global presence

Danfoss VSD centers

- USA (Rockford)
- Denmark (Graasten)
- Finland (Vaasa)
- China (Haiyan)
- India (Chennai)
- Germany (Flensburg)

Danfoss Drives globally:

- ~ 4500 people
- Sales & service in > 80 countries
- 20 mill VSD supplied
- TS 16949

First to introduce dedicated VSD for W&WW

The Water – Food – Energy - Nexus

www.cna.org/reports/accelerating-risks --

A few statements from WEO 2016

Chapter 9: Water - energy nexus:

- Water counts for 4 % of global electricity ~ Russia (+ gasoline)
- Electricity consumption **expected to double** next 25 years
- The energy saving in "450 Scenario" is ~ 70 larger coal fired power plants
- Leakage reduction to 6 % as Denmark ~ 130 TWh saved ~ Poland's entire electricity need
- Water provision and wastewater treatment ~ 30
 50 % of municipal electricity bills
- The Aarhus Marselisborg WWTP facility in Denmark produces ~ 100 % more energy than is consumed
- **VSD** mention multiple places as a key component for obtaining these benefits

A case - Ontario Municipal Energy split

Why use VSD drives in the water and wastewater business? ..

The benefits are typically:

- Better water quality
- Better asset protection
- Less maintenance cost
- Reduced energy cost
- Higher plant reliability/capacity

The energy neutrality concept is a lot more than optimizing the wastewater facility

Wastewater Treatment

Energy reduction: 25-60%

Real on-line computer control

High Speed Turbo blowers

Energy-optimal "bottom" aeration

Sludge age control

Energy Production

Energy production increase: **20-60%**

High-efficiency CHP (Combined Heat & Power) facility

Carbon harvest

Insulation of digester

Production when prices are high

Energy neutrality

Avoid burning carbon

Highly efficient components and VSDs in all process step is a precondition

High efficient components – means focus on Installed energy efficiency

Installed or "wire to air" efficiency is the trend (ASME PTC 13)

Installed efficiency the important point

Backchannel cooling vs tradition air-condition

AAF vs AFE harmonic mitigation solution

Options	Efficiency gained		
IE 2 to IE 3 motor	0,9 %		
Backchannel cooling	~ 2,5 %		
AAF vs AFE	1,6 - 3,0 %	- 2-4 %	/0

Options	Savings % of Inv. of VSD
Backchannel cooling	12 - 20 %
AAF vs AFE	7 – 23 %
Total	20 - 43 %

Basis for calculations: LHD AC Drive, 0,1 €/kWh, 60 % load, 24/7 operation, 0,4 W AC/W removed

The energy neutrality concept is a lot more than optimizing the wastewater facility

Highly efficient components and VFDs in all process step is a precondition

Well Field Model – VCS Odense DK > 40 % savings

The energy neutrality concept is a lot more than optimizing the wastewater facility

Highly efficient components and VFDs in all process step is a precondition

The pressure management/reduction concept

Recent case from the US - Emerald Coast Utilities Authority

The effect of pressure management, Gold **Coast Water, Australia**

Ref.: Guidelines for water loss reduction giz

Pressure management experience

Experience from:

- 112 systems
- In 10 different countries

Average result:

- 38 % reduction in pressure
- New breaks reduced by 53 %

Other benefits:

- Typical 38 % water leakage reduction
- Energy consumption reduced by 20 – 40 %
- Extended asset lifetime
- Fewer network related complains

Country Water Utility or System		Number of	Assessed	Average %	Average	
	Water Utility or	Pressure	initial	reduction	%	Mains (M) or
	Managed	maximum	in	reduction	Services (S)	
	Sectors in	pressure	maximum	in new		
		study	(metres)	pressure	breaks	
	Brisbane	1	100	35%	28%	M,S
Australia	Gold Coast	10	60-90	50%	60%	M
┃ ├	Verre Velley	4	100	20%	70%	
	Tarra Valley	-	100	30%	20%	M
Bahamas	New Providence	1	39	34%	40%	M,S
Bosnia	Gracanica	3	50	20%	59%	M
Herzegovin					72%	S
	Caesb	2	70	33%	58%	M
Ⅰ ⊦	Colore DOD		40	202/	24%	
Ⅰ ⊦	Sabesp ROP	1	40	30%	38%	M
	Sabesp MO	1	58	65%	20%	M
Brazil					64%	м
Diazi	Sabesp MS	1	23	30%	64%	
					50%	M
	SANASA	1	50	70%	50%	 S
		-	45		30%	М
	Sanepar	(30%	70%	S
Consta		1	56	4004	23%	M
Canada	Halitax			18%	23%	S
	Armonia	25	400	229/	50%	М
	Armenia	20	100	33%	50%	S
Colombia	Palmira	5	80	75%	94%	M,S
	Bogotá	2	55	30%	31%	S
			52.5	32%	45%	М
Cyprus Leme	Lemesos	(40%	S
England	Bristol Water		62	39%	25%	M
		21			45%	S
England	I have at the line of	40	47.6	32%	72%	M
United U	United Utilities	10	47.0		75%	S
Italy	Torino	1	69	10%	45%	M,S
italy	Umbra	1	130	39%	71%	M,S
USA	American Water	1	199	36%	50%	M
Total n	umber of systems	112				
Association		Maximum	199	75%	94%	All data
		Minimum	23	10%	23%	All data
		Median	57	33.0%	50.0%	All data
		Average	71	38.0%	52.5%	M&S together
		Average		36.5%	48.8%	Mains only
nijarv					_	

Ref:Thornton and Lambert 2007, Water Service Association of Australia Asset Management 2011 ** 16th January 2013, Coombe Abbey, Warwickshire

The energy neutrality concept is a lot more than optimizing the wastewater facility

Highly efficient components and VFDs in all process step is a precondition

The energy neutrality concept is a lot more than optimizing the wastewater facility

Highly efficient components and VFDs in all process step is a precondition

Energy surplus producing wastewater facility Marselisborg WWTP Aarhus Denmark

Size: 200.000 PE ~ 26.000 m3/d

No external carbon sources

142 % electricity in 2014

Excess heat ~2,1 GWh/year in 2014

Total energy produced ~ 192 %

SCADA fallback process control strategy

Layout – Marselisborg wastewater facility

The World Wide first energy-neutral catchment area – Marselisborg, Aarhus Water, Denmark

Fact box

- Energy neutrality for the whole water cycle (water supply + wastewater)
- Catchment area for 200,000 people. No wind, solar or heatpump energy is produced
- Based on energy savings & household wastewater energy production (no external carbon)

Marselisborg catchment area	Status 2014	Status 2016
Energy consumption		
Water treatment, distribution [kWh] (avg. 0.51 kW/m ³ , high)	3,1 mill	3,2 mill
Wastewater transport [kWh]	0,7 mill	0,8 mill
Marselisborg WWTP [kWh] (BOD ₅ = $2,4/TN = 6,0/TP = 0.2$)	3,4 mill	3,2 mill
Total energy consumption [kWh]	7,2 mill	7,2 mill
Energy production		
Electricity production [kWh]	4,4 mill	4,8 mill
Heat production [kWh]	2,1 mill	2,6 mill
Total energy production [kWh]	6,5 mill	7,4 mill
Own energy supply degree		
Wastewater treatment process, electricity and heat [%]	192 %	234 %
Wastewater treatment process, electricity [%]	142 %	150 %
Total Marselisborg catchment area [%]	94 %	103 %

90 VFD's installed in catchment area

What has been done to achieve these results?

Key elements for obtaining beyond Energy Neutrality:

- Process control based on online sensors (RAS, N & P, fall back strategy)
- VSD drives on all rotating equipment (from 40 % to 100 %)
- Carbon harvesting
- Highly efficient components (Bottom aeration, High Speed blowers ..)
- Deep process knowhow
- CHP installation (electricity & heat)

Bio-bus - showing where the fuel comes from Source: Wessex Water/Julian James Photography.

Simultaneous Nitrification/Denitrification

Nitrogen Removal - Process Rates inside floc

increase dramatic

Danfoss

Anammox on side-stream and partly nitrite shunt

Side-stream Anammox

Partly active Nitrite shunt

(Due to an out selection of the Nitrite Oxidizing Bacteria)

Energy Neutrality and Reduced water loss in the water cycle

time process control/modelling

Advanced real

Real time sensors (level, flow, analytical, pressure etc.) Energy neutrality & Reduced Water loss

Real time controllability mainly via VFD's

High efficient components

Also referred to as:

Industry 4.0, Water 4.0, Digitalization of the water industry

How does the concept fit the big agendas.....

Energy savings – the energy reduction agenda Water savings – the water scarcity agenda GHG savings – the CO₂ agenda Longer assets life time-- the asset inv. agenda Higher facility capacity **OPEX** savings the water cost agenda Good ROI Less maintenance

Less customer complaints

More stable processes/higher controllability

Turning the Water Industry into Energy Neutrality + low water leakage

ENGINEERING TOMORROW

<u>http://www.danfoss.com/energy-and-water/#/</u> <u>http://drives.danfoss.com/industries/water-and-wastewater/#/</u>