# Sewage Reticulation – What Option Is Best For You?

Diana Kim, Environmental Engineer Pattle Delamore Partners Ltd, Auckland





#### Introduction

This presentation covers:

Sewage reticulation options

Various projects carried out by PDP

2

## **Reticulation Systems**

#### Gravity

- Conventional
- Enhanced

#### **Pressure Sewer**

- Septic Tank Effluent Pump
- Grinder Pump

#### Reticulation Systems – Conventional Gravity

4



#### Reticulation Systems – Enhanced Gravity



# Reticulation Systems – Pressure



## Reticulation Systems – Pressure (STEP)



#### Reticulation Systems – Pressure (Grinder)



## What have I learnt?

- Horses for Courses!
- Every project is different
- Assess each option against a site-specific set of criteria



# A Useful Tool: Multi Criteria Analysis

| Assessment Criteria       | Weighting  | Option 1     | Option 2 |
|---------------------------|------------|--------------|----------|
| Constructability          | 1 to 100%  | 1 to 5       | 1 to 5   |
| Cultural impact           |            |              |          |
| •••                       |            |              |          |
| •••                       |            |              |          |
| •••                       | ↓<br>↓     | $\checkmark$ |          |
| Total Score (highest scor | e is best) | 1 to 5       | 1 to 5   |
|                           |            |              |          |





#### **Options Considered:**

- Conventional Gravity
- Enhanced Gravity
- Pressure Sewer











| Assessment Criteria                | Weighting | Gravity | Pressure |
|------------------------------------|-----------|---------|----------|
| Constructability                   | 25%       | 2       | 4        |
| Operational complexity             | 15%       | 4       | 2        |
| Operational resilience             | 15%       | 2       | 4        |
| Capital cost                       | 25%       | 3       | 4        |
| NPV                                | 20%       | 3       | 4        |
| Total Score (highest score is best | 2.8       | 3.7     |          |



#### Project 2: Coastal Residential Community



The Proposal: Pressurised reticulation network to a proprietary WWTP

## Project 2: Coastal Residential Community

18

- Proprietary WWTP with subsurface drip irrigation
- Cost Comparison: STEP vs Grinder Pump
  - WWTP costs
  - On-property and Reticulation costs

## Project 2: Coastal Residential Community



## Project 3: Lakeside Residential Community

- 250 residential properties
- Septic tank failures  $\rightarrow$  Public health risk

#### The Proposal: Pressurised reticulation network to a BNR WWTP



# Project 3: Lakeside Residential Community

- Cost Comparison: STEP vs Grinder Pump
  - BNR WWTP and rapid infiltration
  - Grinder pump system retains biological carbon
  - STEP system requires chemical dosing at the WWTP
  - Higher WWTP operating costs for STEP



#### Conclusions

- Horses for Courses
- Assess each option against a site-specific set of criteria
- Consider:
  - Physical constraints
  - Capital, operating, life-cycle costs
  - Requirements at the downstream WWTP



22

# Acknowledgements



PATTLE DELAMORE PARTNERS LTD