

Coordination of Power and Metal Pipelines Using Risk Based Safety Principles

Rodney Urban Technical Director – Power

Beca. Creative people striving together to transform our world

- Background to Coordination Requirements
 - Telecommunication interference method
 - NACE (1977) culminating in RP0177:2000
 - EPRI Project 742-1 (1978) initiated by AGA
 - AS/NZS4853:2000 (simplified risk-based criteria)
 - AS/NZS4853:2012 (EEA/ENA risk-based criteria)

- Purpose of this presentation
 - Highlight key differences between Power & Pipeline risk assessments
 - Summarise work pipeline utilities have being doing to comply with new requirements
 - Inform power engineers carrying out coordination works on pipeline assets

Low Frequency Induction

Earth Potential Rise

Touch and Step Voltage Hazards

Table 1 – Total body impedances Z_T for a current path hand to hand a.c. 50/60 Hz, for large surface areas of contact in dry conditions

Touch voltage V	Values for the total body impedances $Z_{T}\left(\Omega\right)$ that are not exceeded for		
	5 % of the population	50 % of the population	95 % of the population
25	1 750	3 250	6 100
50	1 375	2 500	4 600
75	1 125	2 000	3 600
100	990	1 725	3 1 2 5
125	900	1 550	2 675
150	850	1 400	2 3 5 0
175	825	1 325	2 175
200	800	1 275	2 050
225	775	1 225	1 900
400	700	950	1 275
500	625	850	1 1 50
700	575	775	1 050
1 000	575	775	1 050
Asymptotic value = internal impedance	575	775	1 050

Risk Based Analysis

$$P = E_{\rm f} \times F_{\rm f}$$

$$E_r = \frac{\text{Total duration of exposure per year (in hours)}}{\text{Number of hours in a year}}$$

$$F_{\rm f}$$
 = Average number of hazardous EPR events per year

Risk Based Criteria

Equivalent probability (per annum)	Risk classification for individual death	Resulting implication for hazard mitigation
> 10 ⁻⁴	High	Intolerable Must prevent occurrence regardless of costs
10 ⁻⁴ – 10 ⁻⁶	Intermediate	ALARP for Intermediate Risk Must minimise occurrence unless risk reduction is impractical and costs are grossly disproportionate to safety gained
<10 ⁻⁶	Low	ALARP for Low Risk Minimise occurrence if reasonably practical and cost of reduction is reasonable given project costs

Power Industry Risk Assessment

Pipeline Industry Risk Assessment

- Well insulated unearthed metal pipelines
- Exposure to many overhead and underground transmission and distribution circuits
- An earth fault on a power circuit can cause a dangerous impressed pipeline voltage many tens of kilometres away
- Treating risk at one site can create new risks at other sites
- Pipeline staff not as well trained or equipped for these hazards

Pipeline Industry Risk Assessment

- Each pipeline access scenario potentially has multiple risk components associated with multiple circuits
- Staff are exposed to multiple risk components on multiple pipelines during a year
- Risk assessment must consider all relevant risk components
- Changes to a single powerline may alter only some of the risk components but not the total risk to staff

Pipeline Industry Risk Treatment

- Surge protection across FIKs
- Anode beds
- Pipeline earth electrodes with PCRs
- Equipotential bonding
- Asphalt surface treatment
- Insulating clothing and tools

Electrical Hazard Management Plan

Conclusions

- There are key differences between risk assessments in power and pipeline industries
- The initial (Level 1) assessment is a desktop assessment only
- Basic voltage limit assessment (inputs to detailed calculations required from pipeline utility)
- Personal Safety Assessment power utility to provide key data to pipeline utility so that they can advise on appropriate risk treatments

Questions

Rodney Urban E: rodney.urban@beca.com M: +64 27 202 5347

