Shaken, not stirred Water supply network resilience in the Wellington region

Cedric Papion – MWH, now part of Stantec

Pipelines...

...and Faultlines

Water Supply Infrastructure

Emergency Stage

Survival Stage 1

Survival Stage 2

Survival Stage 3

Operational Stage

Scope of the Study

The study aims at estimating the magnitude of the problem:

- How long to restore the bulk supply?
- How long will users be without water?
- What is the minimum distribution network required to supply priority users and public distribution points?

Bulk Network Vulnerability

Bulk Network Restoration

Possible Restoration Timeline

Current bulk network - best and worst case restoration time estimate

Conclusion for the Bulk Network

The restoration timeline is too long. The storage is too limited. There is insufficient redundancy.

Distribution Points

Distribution Points

Distribution Points

Optimising the Distribution

Connecting the Dots

Optimising the Cost

Uncertainty about rates Uncertainty about quantities. Cost risks Cost opportunities

Data SID, NOAA, U.S. Nawy, NGA, GEBCC

5 km