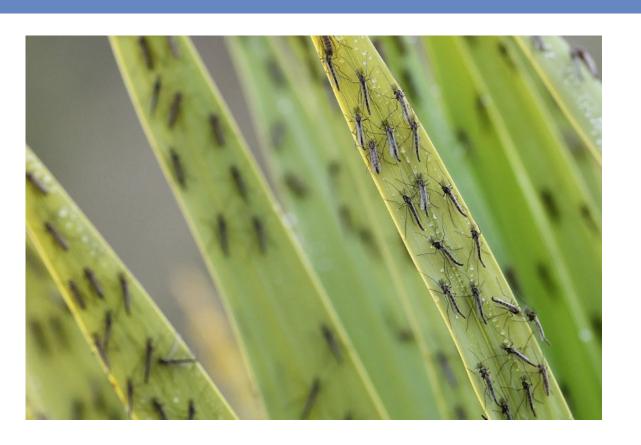


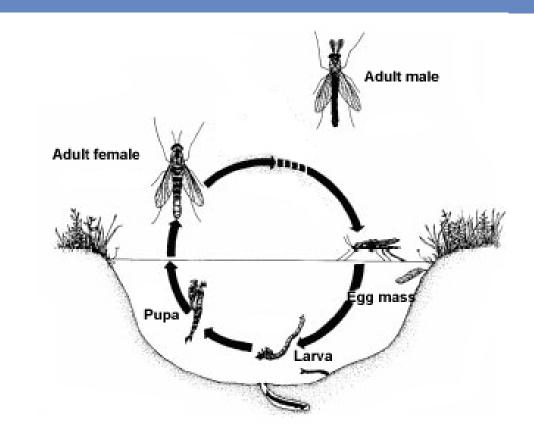
MIDGE NUISANCE - A SWARM IN A TEACUP POND

Becky Macdonald (Presenter), Jamie Roverts and Evie Wallace (CH2M Beca), Lee Liaw (Christchurch City Council)


Chironomus Zealandicus – NZ Midge

So What ????

SWARM



Chemical Control

- Insecticides
 - Larvicide
 - Adulticide

Chemical Control - Larvicide

Chemical	Mode of Action
Methoprene	Juvenile Hormone Analogues
Pyriproxyfen	Juvenile Hormone Mimic
Diflubenzuron	Inhibitor of chitin biosynthesis
Bacillus thuringiensis israelensis (Bti)	Microbial disruptors of insect midgut membranes
Bacillus sphaericus	Microbial disruptors of insect midgut membranes

Chemical Control - Adulticide

Chemical	Mode of Action
Malathion (Maldison)	Organophosphates
Temephos	Organophosphates
Etofenprox	Sodium channel modulators
Pyrethrin	Sodium channel modulators
Bifenthrin	Sodium channel modulators
Spinosad	Nicotinic acetylcholine receptor (nAChR) allosteric modulators (spinosyns)
Spinetoram	nAChR allosteric modulators (spinosyns)

Chemical Control - Adulticide

Chemical Control - Toxicology

Risk to non-target species?

Eels...photo...

- Direct contact
- Secondary contact

Other Control Options

Control	Mode of Action
Invertebrate predators – planarian flatworm	Consumes Larvae
Agnique Monomolecular Film	Reduces water surface tension - prevents adult emergence
Light Boards	Midges attracted to light – Boards sprayed insecticide
LED lighting posts and spray	Midges attracted to light – Insecticide auto-sprayed
Barrier vegetation	Barrier and Surface for insecticide spraying
Saltwater flushes	Midges intolerant to salt water
Sun bakes	Stresses and kills larvae
Mechanical dredging of sediment materials	Physical removal of larvae
Electrocutor traps	Midges attracted to light – Electrocution

Midge Monitoring

Technique	Effectiveness
Number of public complaints	Widely used
Yellow sticky traps	Convenient
Larval counts	Not strongly correlated with other methods
Egg-mass counts	Inaccurate for larger populations
Adult emergence traps	Not effective for large scale operation

Conclusions

No easy solution

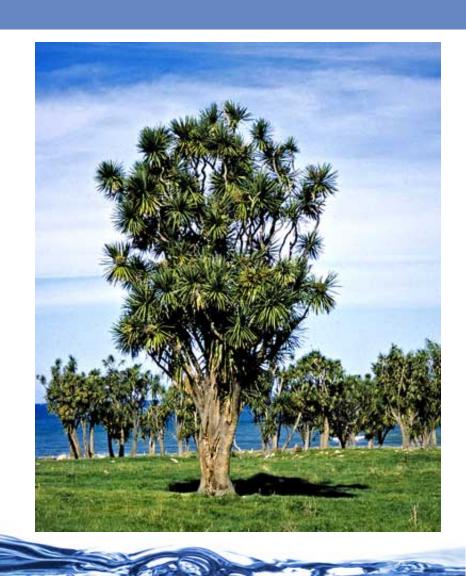
Integrated Management Plan:

- Larvicide e.g.methoprene (summer)
- Adulticide vegetation spray e.g. Etofenprox (summer)
- Alternating chemicals
- LED light traps with adulticide sprays
- Vegetation planting programme
- Monitoring e.g. yellow sticky traps

References

- AgResearch. (1999). *Environmental and health impacts of the insect juvenile hormone analogue, S-methoprene.* March.
- Ali, A. (1995). Nuisance, economic impact and possibilities for control. *The Chironomidae: The biology and ecology of non-biting midges*, 339-364.
- Ali, A. (1996). A Concise Review of Chironomid Midges (Diptera: Chironomidae) as Pests and Their Management. Journal of Vector Ecology 21, 1-17.
- Arshad, A., & Mulla, M. (1983). Evaluation of the planarian, Dugesia dorotocephala, as a predator of Chironomid midges and mosquitoes in experimental ponds. *Mosquito News*, 046-049.
- Broza, M., Gahanma, L., Halpern, M., & Inbar, M. (2003). Nuisance chironomids in waste water stabilisation ponds: monitoring and action threshold based on public complaints. *Journal of Vector Ecology*, 31-36.
- Dow AgroSciences. (2014, October 24). Spinetoram. Retrieved from Spinetoram Product Safety Assessment: http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_096d/0901b8038096db50.pdf?filepath=productsafety/pdfs/noreg/233-00382.pdf&fromPage=GetDo
- Duchet, C., Franquet, E., Lagadic, L., & Lagneua, C. (2015). Effects of Bacillus thuringiensis israelensis and spinosad on adult emergence of the non-biting midges Polypedilum nubifer (Skuse) and Tanytarsus curticornis Kieffer (Diptera: Chironomidae) in coastal wetlands. *Ecotoxicology and Environmental Safety*, 272-278.
- EPA. (2016, August 11). *Introduction to Integrated Pest Management*. Retrieved from United States Environmental Protection Agency: https://www.epa.gov/managing-pests-schools/introduction-integrated-pest-management

References


- Failla, A. J., Vasquez, A. A., Fujimoto, M., & Ram, J. L. (2015). The ecological, economic and public health impacts of nuisance chironomids and their potential as aquatic invaders. *Aquatic Invasions*, 1: 1-15.
- IRAC. (2016, April). IRAC Mode of Action Classification Scheme. Retrieved from Insecticide Resistance Action Comittee: http://www.irac-online.org/documents/moa-classification/
- Lawler, S. P., & Dritz, D. A. (2013). Efficacy Of Spinosad In Control Of Larval Culex Tarsalis And Chironomid Midges, And Its Nontarget Effects. *Journal of the American Mosquito Control Association*, 352-357.
- NC State University. (2006, July). Biology and Control of Non-Biting Aquatic Midges. Retrieved from Residential, Structural and Community Pests: https://www.ces.ncsu.edu/depts/ent/notes/Urban/midges.htm
- NIWA. (2005). Control of chironomid midge larvae in wastewater stabilisation ponds: comparison of five compounds. Auckland, New Zealand.
- Olson Products Inc. (2016). Sticky Strips. Retrieved from Olson Products Inc.: http://www.olsonproducts.com/Insect-Control.html
- Techletter. (2013, https://www.techletter.com/Archive/Technical%20Articles/midgechemicalctrl.html). Techletter. Retrieved from Chemical Control of Chironomid Midges.
- Watercare Services Ltd. (2016). Controlling Midge Nuisance at Mangere 10 Years of Operational Experience. Auckland, New Zealand.

Questions?

