Waste Stabilisation Pond Workshops

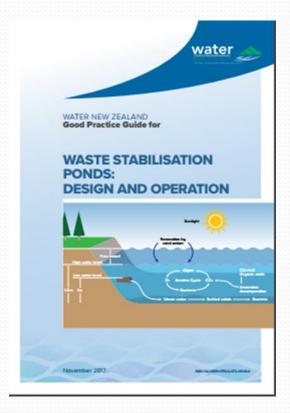
Nick Walmsley

• May 2018

A consistent approach across the 3 waters sector

Workshop Program

- Pond Classifications and typical performance
- What to size for
- Upgrade Options; by performance and process
- O & M requirements
- Monitoring & Sampling
- Troubleshooting
- Colour Observations
- Maintenance requirements
- Observations on "Where to from here?"



The WSP Guide

Contents:

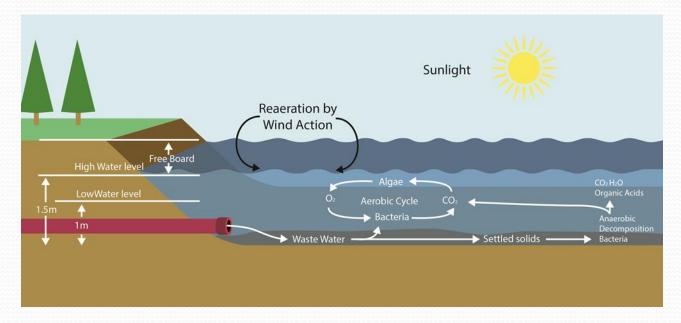
- 1. General
- 2. Design and Construction
- 3. Pond Modifications and Upgrades
- 4. Operation and Maintenance
- 5. Resource Consent and Pond Monitoring
- 6. Frequently Asked Questions

What is the Guide? Why do we need it? What does it cover?

Authors and Reviewers

NZWWA 2007 draft Guide: Steve Cameron, NZET Ltd Stu Clark, NZET Ltd

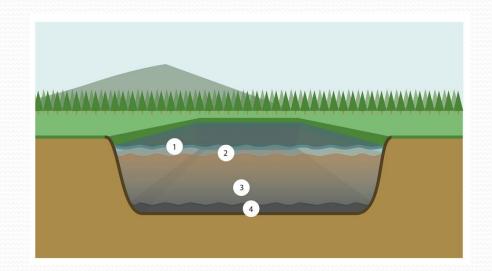
Authors:


- Humphrey Archer, CH2M Beca Ltd
- Gilles Altner, Global Environmental Engineering Ltd
- Rupert Craggs, NIWA
- John Wong, Parklink
- Regan Senior, Parklink
- Hugh Ratsey, The Wastewater Specialists
- Nick Walmsley, Water New Zealand

WSMG Reviewers:

- Paul Gaydon, Horowhenua D.C.
- Terry Dodd, Dunedin C.C.
- Peter Cowdell, Water Northland
- Mike Bourke, Christchurch C.C.
- Barry Somers, Northland D.C.

Pond Classifications

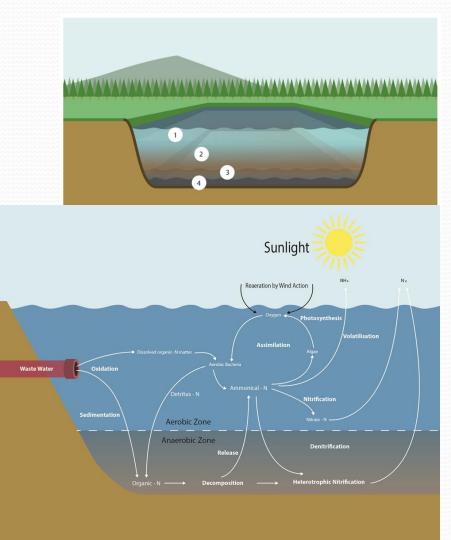

- Classifications based on organic loading
- Waste Stabilisation Ponds <u>not</u> Oxidation Ponds
- Anaerobic, Facultative, Maturation <u>not</u> primary, secondary, tertiary
- Partially/Fully Mixed Aerated Lagoons are different
- Nearly 200 community WSPs in NZ; appear simple but need skilled operation and regular attention!

Anaerobic Ponds

Layers:

is aerobic liquid
 is anoxic liquid
 is anaerobic liquid
 is anaerobic sludge

- High organic load; all oxygen used by bacteria
- Usually deep; $\geq 3m$
- Often used to treat high strength wastewaters
- Can but need not smell if loaded and operated properly



Facultative Ponds

Layers:

is aerobic liquid
 is anoxic liquid
 is anaerobic liquid
 is anaerobic sludge

- Aerobic surface with algae & aerobic bacteria
- 1.3-1.5m depth
- < 1W/m³ aeration/mixing

Maturation Ponds

- Predominantly aerobic depth 0.8 1.5m
- Traditional design based on temperature decay rate
- Designs now include:
 - Minimising algal growth
 - Exposure to sunlight radiation
 - Multiple ponds in series
 - Perimeter planting (wetland ponds) to increase habitat value

Typical WSP Effluent Quality

One and Two cell Facultative WSP Systems (Hickey et al 1989)

Contaminant	Minimum	Median	95%ile
$BOD_5 (mg/l)$	7	27	70
Suspended solids (mg/l)	10	56	150
Faecal coliform bacteria (#/100 ml)	9 X 10 ¹	4.3 X 10 ³	2.3 X 10 ⁵
Total Phosphorus (mg/l)	1.3	8.2	11.3
Dissolved Reactive Phosphorus (mg/l)	0.8	5	9.5
Ammoniacal Nitrogen (mg/l–N)	0.001	7	29

Can get better quality than this with modern upgrades.

Historical Vs Current Sizing Criteria

	Historical	Current
Anaerobic Ponds	<0.2 Kg BOD/m³.d + natural cover	≤ 0.3 Kg BOD/m³.d & specific designs e.g. CAP, HRAL
Facultative Ponds	Pop ⁿ Equiv @ 70g BOD ₅ e.g. 84 KgBOD/ha/d	Specific loadings Up to 250KgBOD/ha/d
Maturation Ponds	20d retention	Smaller multiple ponds in series

Algal Ponds (HRAPs & AHPs)

HRAPs:

- Promote aerobic process
- Don't treat raw wastewater but follow primary processes
- Shallow (300-600mm), Short HRTs (4-8d)
- Paddlewheel mixing (≈0.5 kW/ha, 0.15-0.2 m/s)
- High rate algal production & treatment
- Can add CO₂ to enhance N removal
- Ave annual effluent <15 BOD₅; <15 TSS; <10 TN; <5 NH₄-N; <6 TP;
 <4 DRP <100 E.coli) but highly temperature dependent

AHPs:

- Gravity settlers & algal thickeners
- 6-8hrs retention
- 70-90% TSS removal at 1-3%DS

Partially & Fully Mixed Aerated Lagoons

- Not WSPs but separate treatment processes
- 2-6 d HRT
- High TSS due to BOD conversion
- $\geq 4 \text{ W/m}^3 \text{ aeration}$
- Can be operated by timer and/or DO meter
- Low aeration efficiency at less than 2m depth
- Following processes should allow for TSS capture

What to size for

- Seasonal peaks:
 - $\leq 25\%$ population growth
 - Tourists summer or winter?
 - Industry export market or local produce growth?
 - Commerce may align with tourists
 - Climate coldest month & warmest month
 - Rainfall, seepage and evaporation

Consider all the above for both flows and loads

Facultative Ponds

- Mixing:
 - Wind plus max 1 W/m³ surface mixing
- Hydraulics:
 - No short circuiting
 - Inlet flow control e.g.
 - cf Guidelines for the hydraulic control of WSP

Pond Modifications and Upgrades

Drivers:

- Significant operational problems e.g. odour, non-compliance with consents, complaints, equipment failures
- An increase in loading or changes in consent conditions
- Political reasons

Experience shows that generally all reasons have an O&M root cause. Therefore **examine O&M practices and requirements first**!

What Can You Upgrade To Improve?

Algal Solids Biomass Solids

Inert Solids

Surface Sludge

BOD

Ammoniacal-N

Total N

Total P

Faecal Bacteria and Viruses

Odour

pH & Alkalinity

Temperature stratification

Low DO

Wave height

Upgrade Options for Algal Solids

			Use	Refer
Mechanism	Upgrade Options	Pond	Term	Sections
Prevention	Artificial pond cover	F/M	L	3.4.10
	Aeration & mixing	F/M	S/L	3.4.4, 3.4.5
Retention	Improved outlet structure	F/M	S/L	3.4.2
	Pond subdividing	F/M	L	3.4.6
	Wetlands / Floating wetlands	F/M	L	3.4.8, 3.5.8
Electrical inhibition	Ultrasound	(F)/M	S/(L)	3.4.11
Filtration	Pond internal biological filter	F/M	L	3.4.8, 3.4.9
	Pond external micro screening	F/M	L	3.5.1
	Pond external membrane treatment	F/M	L	3.5.2
	Pond external biological filter (trickling filter)	F/M	L	3.5.6
	Slow sand filtration	(F)/M	L	3.5.1
	Rapid sand filtration	F/(M)	L	3.5.1
Chemical dosing	Pond internal	F/M	S	3.4.10
Flotation	DAF / IAF	F/M	L	3.5.3
Code: A/F/M: Anaerobic, Fa	acultative, Maturation pond; on	S/L:	short, long-te	ərm;

Upgrade Options for Dissolved BOD

Mechanism	Upgrade Options		Use	Refer Sections	
		Pond	Term		
Prevention	Desludging	A/F	L	3.4.12, 4.4.7	
Treatment	Aeration & mixing	F/(M)	S/L	3.4.4, 3.4.5	
	Improve pond hydraulics	A/F/(M)	L	3.4.3	
	Subdivide	F/(M)	L	3.4.6	
	Pond internal biological filter	F/(M)	L	3.4.8, 3.4.9	
	Pond external biological filter	F/(M)	L	3.5.6	
	Chemical aeration	F	S	3.4.10	
	Other (aeration & mixing)	F/(M)	S	3.4.14	

Upgrade Options for Ammoniacal-N within Pond/at Outlet

Mechanism	Upgrade Options		Use	Refer Sections
		Pond	Term	
Prevention	Desludging	F/(M)	S/L	3.4.12, 4.4.7
Treatment	Aeration & mixing	F/(M)	S/L	3.4.4, 3.4.5
	Improve pond hydraulics	F/(M)	L	3.4.3
	Subdivide	F/(M)	L	3.4.6
	Pond internal biological filter	F/(M)	L	3.4.8, 3.4.9
	Pond external biological filter	F/(M)	L	3.5.6
	Other (aeration & mixing)	F/(M)	F/(M) S 3.4.14	
Code: A/F/M: Anaerobic, Facu (): limited application	Itative, Maturation pond; S/L: short, long-term;			

Pre-Pond	In-Pond	Post-Pond
Screening	Inlet modifications	Post filtration
Septage reception	Outlet modifications	Membrane Filtration
Grit removal	Flow Direction Devices	DAF or IAF
Septage Ponds, Imhoff Tanks, Geobags	Aeration and/or Mixing	Lamella Clarifiers
Anaerobic Ponds	Subdividing ponds	Micro-sand injected Rapid Gravity Settlers
Pre-aeration	Attached Growth Media	UV disinfection
DAF or IAF	Floating Wetlands	External Rock Filters
Physical or Chemical Precipitation	Pond Covers and In-Pond Rock Filters, Bio-domes	Other external filters e.g. Bark, Biofiltro
pH adjustment	Chemical Dosing; for alkalinity or TP change	Wetlands
Heavy metals and/or chemicals Adsorption	Ultrasonic Algae Control	Electrocoagulation
Hydrocarbon pre-treatment	Enhanced Microbial Digestion	
Other Industrial specific pre-treatment	Pond Conversions	

Pre-Pond Upgrades

- Screening
- Septage Receiving Stations
- Grit removal
- Septage ponds, Imhoff Tanks, Geobags
- Anaerobic Ponds
- Pre-aeration
- DAF or IAF
- Physical or Chemical Precipitation
- pH adjustment
- Alkalinity adjustment
- Heavy metals and/or chemicals Adsorption
- Hydrocarbon pre-treatment
- Other Industrial specific pre-treatment

In-Pond Upgrades

- Inlet Modifications e.g. jetting or distribution often 1st priority
- Outlet Modifications often 2nd priority
- Flow Direction Devices; active or passive
- Aeration and/or Mixing
- Subdividing ponds
- Attached Growth Media
- Floating Wetlands
- Pond Covers and In-Pond Rock Filters, Bio-domes, Bio-shells
- Chemical Dosing; for alkalinity or TP change
- Ultrasonic Algae Control
- Enhanced Microbial Digestion
- Pond Conversions

Post-Pond Upgrades

- Post Filtration
- Membrane Filtration
- DAF or IAF
- Lamella Clarifiers
- Micro-Sand Injected Rapid Gravity Settlers
- UV Disinfection
- External Rock Filters
- Other External Filters e.g. Bark, Biofiltro
- Wetlands
- Electrocoagulation

Indicative Effluent Quality From Improved Pond Systems

Contaminant	BOD ₅	55	TN	NH4-N	тр	DRP	FC	E. coli
Contaminant	g/m³	g/m³	g/m³	g/m³	g/m³	g/m³	cfu/100 ml	cfu/100 ml
Facultative (Primary) Pond	40	50	40	15	8	6	20X 10 ³	10X10 ³
Maturation (Tertiary), Pond	30	40	35	13	8	6	10X10 ³	5x10 ³
Multiple Maturation (Tertiary), Ponds in Series	30	40	25	10	8	6	2 X 10 ³	1 X 10 ³
Membrane-Filtration	5	1	5	10	4	4	Detection limit	Detection limit
Rock Groynes	30	35	30	10	8	6	5x10 ³	2X10 ³
Growth Media Ponds	20	30	12	4	6	4	5X10 ³	2X10 ³
Coagulation and Sand Filtration	5	5	20	10	5	3	50	10
Wetlands	15	15	25	5	6	4	5X10 ³	2X10 ³
Wetlands and UV Light	15	15	25	5	6	4	200	100
High Rate Algae Pond Systems	15	15	10	5	6	4	200	100

Operations & Maintenance (O&M)

WSP require less O&M than mechanical systems...

BUT THEY DO REQUIRE REGULAR O&M!

- Monitor the health of the WSP process.
- Undertake general housekeeping around the site.
- Maintain the structural integrity of the WSP.
- Collect samples for resource consent compliance.

Monitoring & Sampling

- Resource Consent Monitoring minimal requirement
- Influent Monitoring:
 - Community
 - Septage and Industrial Discharges
- Process:
 - pH, DO, EC, Temperature, Algae, sludge level, solids concentration and contaminant levels
- Between Ponds
- External Parameters:
 - Air Temperature, Wind Speed, Solar Radiation, Catchment and Pond rainfall and evaporation

Recommended Monitoring Schedule

Parameter	Method	Frequency	Comments
DO	In-situ or on-line	Daily or continuously	Remote sites may be visited once or twice per week
рН	In-situ or on-line	Daily or continuously	Remote sites may be visited once or twice per week
Conductivity	In-situ or on-line	Daily or continuously	Remote sites may be visited once or twice per week
Temperature	In-situ or on-line	Daily or continuously	Remote sites may be visited once or twice per week
Algal TSS	Laboratory		Depending on WSP complexity
Algal Species	Laboratory		Depending on WSP complexity
Chlorophyll a	Laboratory or on-line	Weekly or continuously	Depending on WSP complexity
Sludge level	In-situ	1 – 5 yearly	Depending on rate of accumulation
Sludge characteristics	Laboratory	1 – 5 yearly	For desludging purposes

Recommended Sampling Schedule

Parameter	Method	Frequency	Comments
DO	In-situ or on-line	Daily or continuously	Remote sites may be visited once or twice per week
рН	In-situ or on-line	Daily or continuously	Remote sites may be visited once or twice per week
Conductivity	In-situ or on-line	Daily or continuously	Remote sites may be visited once or twice per week
Temperature	In-situ or on-line	Daily or continuously	Remote sites may be visited once or twice per week
Algal TSS	Laboratory		Depending on WSP complexity
Algal Species	Laboratory		Depending on WSP complexity
Chlorophyll a	Laboratory or on- line	Weekly or continuously	Depending on WSP complexity
Sludge level	In-situ	1 – 5 yearly	Depending on rate of accumulation
Sludge characteristics	Laboratory	1 – 5 yearly	For desludging purposes

Т

Troubleshooting

Smells & Odours Low DO Stratification and Pond Turn-over **Unexpected Pond Crashes** Insufficient Algal Growth **Excessive Algal Growth** Blue-Green Algae (Cyanobacteria) Blooms **Colour Observations Invasive Plant Growth** Flies, Mosquitos, Midges Fish Birds Effluent Deterioration Overloading Sludge Accumulation **Excessive Floating Matter**

Colour Observations

Principal causes of Effluent Quality Loss

Maintenance

General Housekeeping:

- Keep clean and tidy
- Check data collection, transmission, recording Equipment maintenance Instrument Maintenance
 Inlet & Outlet Structures
 Waveband Maintenance & Repair
 Pond Liner Maintenance & Repair
 Desludging Methods
 Other e.g. rodent or bird issues
 Review Resource Consent Conditions
 Prepare in advance for Resource Consent Applications

Troubleshooting

Smells & Odours Low DO Stratification and Pond Turn-over **Unexpected Pond Crashes** Insufficient Algal Growth **Excessive Algal Growth** Blue-Green Algae (Cyanobacteria) Blooms **Colour Observations Invasive Plant Growth** Flies, Mosquitos, Midges Fish Birds **Effluent Deterioration** Overloading Sludge Accumulation **Excessive Floating Matter**

Colour Observations

Pond Colour	Interpretation				
Dark green and	Unimportant presence of other microorganisms in the effluent				
partially transparent	High pH and DO values				
	Pond in good condition				
Orange red	Bloom of <i>Daphnia</i> or <u>Moina</u> which will reduce pond algae and DO concentrations				
Yellow green or excessively clear	The result of a rotifers, protozoa or <u>cladoceran</u> bloom which graze on the algae and can decimate their population in days				
	If the conditions persist, there will be a decrease in DO and the potential for odour nuisance.				
Greyish	Overload of organic matter and/or short detention time				
	Incomplete anaerobic digestion in the sludge layer				
	The pond should be put out of operation				
Milky green	The pond is in a self-flocculation process as a result of high pH and temperature causing flocculation of algae with magnesium and calcium hydroxides.				
Blue greenish	Excessive proliferation of cyanobacteria				
	The bloom of a certain species forms a scum that decomposes easily, leading to bad smells, reduction of light penetration and green algae, as a consequence, reduction in oxygen production				
Brownish red	Overload of organic matter				
	Presence of photosynthetic sulphide-oxidising bacteria (they require ligh and sulphides, use CO₂ as an electron acceptor, do not produce oxygen and do not help in BOD removal).				

Source: Arceivala (1981) and CETESB (1989)

Principal Causes of Effluent Quality Loss

Contaminant	Typical Effluent Concentration	Deviation	Potential Causes	Potential Solutions
TSS	10 – 150 mg/L	> 50 mg/L	Algal growth	Outlet shading
			Sludge build-up	Desludge
BOD	15 – 110 mg/L	> 40 mg/L	Algal growth	Outlet shading
			Sludge build-up	Desludge
NH ₄ -N	0.5 – 30 mg/L	> 15 mg/L	Cold temperatures	-
(winter)			Sludge build-up	Desludge
			Low DO	Add aeration
			Overloading	Reduce load
NH ₄ -N	0.1 – 10 mg/L	> 5 mg/L	Sludge build-up	Desludge
(Summer)			Low DO	Add aeration
			Overloading	Reduce load
DRP	2 – 12 mg/L	> 6 mg/L	High influent concentrations	-
			Sludge build-up	Desludge
ТР	4 – 16 mg/L	> 8 mg/L	High influent concentrations	-
			Sludge build-up	Desludge
E. coli	2,000 - 50,000 cfu/100mL	> 10,000 cfu/100mL	Short-circuiting	Improve hydraulics
Faecal coliforms	5,000 - 100,000 cfu/100mL	> 20,000 cfu/100mL	Short-circuiting	Improve hydraulics

Maintenance

- General Housekeeping:
 - Keep clean and tidy
 - Check data collection, transmission, recodring
- Equipment maintenance
- Instrument Maintenance
- Inlet & Outlet Structures
- Waveband Maintenance & Repair
- Pond Liner Maintenance & Repair
- Desludging Methods
- Other e.g. rodent or bird issues
- Review Resource Consent Conditions
- Prepare in advance for Resource Consent Applications

Where to from here?

Putting it into practice:

- Training at all levels plus refreshers
- Budgeting for correct O&M e.g.
 - enough/correct staff
 - Enough/correct monitoring; influents and effluents
 - Regular desludging to long term use/disposal
- Updating SOPs
- Reviewing Resource Consent details
- Making sure it happens all the time!

WSP Guide Workshops

Location	Date
Balclutha	Tuesday 1 May
Christchurch	Wednesday 2 May
Nelson	Thursday 3 May
Ngaruawahia	Wednesday 9 May
Kerikeri	Thursday 10 May
WIOG Conference, Palmerston North	Friday 11 May

