TOOLS FOR NPS-FM IMPLEMENTATION **IN URBAN** CATCHMENTS

Jennifer Gadd, Sharleen Yalden, Jonathan Moores Urban Aquatic Environments, NIWA, Auckland

CONTAMINANT LIMIT SETTING

YIELD-BASED CATCHMENT CONTAMINANT LOAD MODELS

Contaminant Load Model Yersion 2.9 March 2011																					,	Auck	lan	d 🤞	*	
Catchinent name	CATCHMENT NAME																					Co	uno	il 🛛		
A	вс	٥	E	٢	G	н	1	J	к	L	м	N	0	Р	Q	R	5	r	U	v	×	×	Y	z	AA	48
C.	ichmeni area (m ²)		Sparce or	ortarrinar	tnanager	tent train							Costern	inant yi	elds.lo	bre she	lostredi	stionf	asiora							
		Sourc	1st	and	and	Fractio n of	τc	cal suspe	nded so	ids (T	55)	Zho	ditto	lect part load T	culate Znj	416	Copper	suspe dice:	nded p irred (1	rtal	81 E 310	трн	dire	iced pa seed T	кола генј	e and
Course	Domos (ilbe	Pero (m ²)	rami option	ment option	ment option	area diaining to train	1604 (1757)	Nuclear (cr ²)	Haved reduction m	hel adert B	Notani Indian'i	ner (m ¹ 11)	nea India A	bei neteri B	lead raiteria	noticed heatier	568 (16 ⁴ 7 ¹)	hasar Ioni (11 ⁴)	t bol roboti st	101 101 101	felis feel ()	гын (18 ⁴ 8 ⁴)	1.114 (1.04() 4 ⁻)	tiond adarti m	1 4 5	Federard Incollege 7
Forie	Editation of the solution of Salitation of the algorithm of Salitation of the algorithm of Salitation of the algorithm of Salitation on second (Caleschurd Ex- Constant, Doctor), Doctor,	ikor) In codules	a natal tik		2		10 10 10 10 10 10 10 10 10 10 10 10 10 1					12400 13433 0.2003 0.2803 0.2003 0.2003 0.2003 0.0203 0.0203	10000000000000000000000000000000000000				2000 C000 C000 C000 C000 C000 C000 C000	10 00 00 00 00 00 00								
Parak	10604x/03/ (1000 001-5330 1000 20000 23000 50000 10000 10000 -00000						21 20 10 60 10 214		C.00 C.00 C.00 C.00 C.00			0.0044 0.0255 6.108 0.2574 0.4211 0.7294	0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00		6.0 6.0 6.0 6.0 6.0	C.60.40 0.00887 0.00685 C.60570 8.55700 C.24554	0.0 0.0 0.0 0.0	500 500 500 500 500 500 500 500 500 500			0.6332 0.2010 0.6001 1.0414 0.5645 1.5152	000000000000000000000000000000000000000	9.0 9.0 9.0 9.0 9.0		9.0 9.0 9.0 9.0 9.0
Passed Conferencements	Ruiduiéd Induited								C.00 C.00			0.1050	- 20	0.00			0.0060	83	6.00 6.00		- 3					
Urban Samplands and	Commercial Single < 5						52		0.00			0.0000	0.0	0.00		0.0	30000	0.0	6.00							
traf	5 (3000 (3) 5000 (3)						82		0.00			0.0032					0.0005	0.0								
Urban Strien Olional	Augo y uses Urban you without construction sites						Totals		0.00	_		O 2100 Totals	0.0	0.00		0.0	0.0420 Totale	0.0	0.00		1	Totals	0.0	300		
Construction Statutes on	Separat Selling (1)						2100		0.00			0.0880					0.0300	- 69								
fs: Energiation	Sicec (1)						11140		0.00		-	0.310	0.0			0.0	0.0140	0.0								
Eastic states (as / east	Sinte (1) (0 (Sinte (20)) Sinte (20)						35		0.00			0.002	0.0			0.0	0.002	0.0				1.08542				
Dealertertertert	Sippe (1) 10 c Sispe (20						14 44		0.00			0.0005	0.0			0.0	0.0001	0.0			11					
	3 kpc s20 3 kpc s10						60 112	1	0.00			0.0023	0.0			0.0	0.0000	0.0			1					
fame (partas	10 c Olepe (20 Plage 300						450 920		0.00			0.0000	- 23			- 23	0.0065	80								
Patient gammer	Flops (1) (0 (Daps (20 Flops (20						- 20 60		0.00			0.0002					0.0001									
Hardenbury	Voicasie SoirAges Zediment						50 100		0.00			0.000	0.0				0.00087									
-	http://www.uniter.com						Test.		0.00	-		line's	1.0				(shek	1.0				Tabair				6.0

COUPLED CATCHMENT LOAD AND STREAM HYDROLOGICAL MODELS

OBJECTIVE

Explore methods for assessment against in-stream concentration-based attributes in urban catchments with minimal data:

1. INCORPORATION OF UNCERTAINTY 2. ESTIMATION OF IN-STREAM CONCENTRATIONS

1. INCORPORATING UNCERTAINTY INTO LOAD MODELS

MOTIVATION

Catchment zinc load = 50 kg/year

	Mitigation A	Mitigation B
Cost	\$200 K	\$250 K
Load reduction	40% <mark>(35-50%)</mark>	60% <mark>(20-70%)</mark>
Zinc load after mitigation	28-32 kg/year	15–40 kg/year

Totara Park

Auckland Botanic Gardens

MANUREWA

🕗 Puhinui Reserve

YIELD-BASED LOAD MODELS

- Divide catchment into source types
- Each source type has contaminant yield
- Treatment incorporated by load reduction factor
- Load from catchment = Σ source area x source yield x load reduction factor

From Deletic et al. (2012). Physics & Chemistry of the Earth 42:3-10.

ASSIGNING DISTRIBUTIONS

SOURCE YIELDS

Assume yields are uniformly distributed between "low", "best" and "high" CLM values

Seek to refine where possible, exploring alternative methods to define distributions

E.g. roof source yields

LOAD REDUCTION FACTORS

ERE EAST

Assume LRFs are uniformly distributed between the range of values suggested by a review of literature

Range of values very broad for many of the treatment devices

Represents a first-cut approach

Totara Park

Puhinui Reserve

EXAMPLE

- 1 ha source area
- unpainted galvanised steel roof
- treatment through raingardens

A. Baseline CLM

2.8 g/m²/yr x 60% removal source yield load reduction factor

= 9.0 kg/year

average annual load

B. CLM with uncertainty

load reduction factor

distribution of annual loads

2. ESTIMATING IN-STREAM CONCENTRATIONS FROM LOADS

ZINC YIELDS VS IN-STREAM ZINC CONCENTRATIONS

50 20 Median 10 dissolved zinc 5 (mg/m^3) 2 0.5 $R^2 = 0.71$ 0.005 0.01 0.02 0.05 0.1 0.2 Yield $(g/m^2/yr)$

200 95th 100 percentile 50 dissolved 20 zinc (mg/m^3) 2

total

zinc

COPPER YIELDS VS IN-STREAM COPPER CONCENTRATIONS

Median dissolved copper (mg/m³) 0.5

total

SEDIMENT YIELDS VS IN-STREAM TSS CONCENTRATIONS

Yield (kg/m²/yr)

Yield (kg/m²/yr)

Does it only work for Auckland?

ZINC – INCLUDING WELLINGTON AND CHRISTCHURCH

POTENTIAL APPLICATIONS

- Estimate current in-stream Cu & Zn in unmonitored streams
- Predict future Cu & Zn in monitored or unmonitored streams
- Estimate maximum allowable loads to achieve desired in-stream concentration
- Identify streams with additional Cu & Zn sources

3. CASE-STUDY: APPLYING THE METHODS

FLAT BUSH

Service Park

PUHINUI STREAM CATCHMENT CURRENT LANDUSE

Forest
Horticulture
Pasture
Paved surface
Roads
Roofs
Streams
Urban grassland

O Puhinui Reserve

CURRENT STREAM CONCENTRATIONS

Copper (mg/m³)

Zinc (mg/m³)

Coloured bands relate to protection levels from ANZECC (2000) guidelines

POSSIBLE SCENARIOS TO REDUCE ZINC LOADS AND CONCENTRATIONS

- Source control replace galvanised iron roofs with low-zinc materials
- Wetland treatment throughout the catchment
- Source control and wetland treatment

PUHINUI STREAM CATCHMENT ESTIMATED ZINC LOADS

MEDIAN DISSOLVED ZINC PREDICTED FROM YIELDS

Store .	Median zinc conc. (mg/m³)	Attribute state *
Baseline	13	С
Source control	7.1	В
Wetland	5.9	В
Source control & wetland	2.7	В

* Indicative only, based on ANZECC (2000) guidelines, see paper for details

RANGE IN ZINC PREDICTIONS WITH WETLAND TREATMENT

Load estimate	Yield	Median zinc conc. (mg/m³)	Attribute state *			
Mean	0.047	5.9	В			
10 th percentile	0.031	4.0	В			
90 th percentile	0.066	8.1	С			

* Indicative only, based on ANZECC (2000) guidelines, see paper for details

SUMMARY

LOADS WITH UNCERTAINTY

- It is important to quantify uncertainty in model predictions
- Uncertainty can be quantified through modelling or literature review
- Proof-of-concept will be expanded and refined

ESTIMATING IN-STREAM CONCS

- Need to model in-stream concentrations
- Simple empirical relationships can provide screening estimates
- Refinement of data and relationships needed

Catchment load estimates with uncertainty, linked to estimates of in-stream concentrations

ACKNOWLEDGEMENTS

Data supplied by Auckland Council, Greater Wellington Regional Council, Christchurch City Council.

Funded through MBIE Strategic Science Investment Funding Freshwater and Estuaries Centre Projects FWWQ1713 & FWWQ1813

