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ABSTRACT 

Implementation of the National Policy Statement for Freshwater Management (NPS-FM), 

in urban catchments is likely to require quantitative models to enable limit-setting of 

contaminants, including copper and zinc. Some models currently available require 

considerable resources in terms of the time to set-up and implement, and many have 

substantial data requirements for calibration (e.g., continuous flow monitoring data). 

More simplistic models, such as spreadsheet or GIS-based catchment load models, do not 

provide information on in-stream concentrations required for assessing attribute states. 

We are exploring new modelling methods that are suitable for catchments with minimal 

data (e.g., no water quality data, no continuous flow monitoring) and provide the 

required information for comparison to in-stream concentration-based attributes and 

source-based load limits. These methods can be applied as screening tools, to indicate 

where more resource is required (either additional monitoring or more sophisticated 

modelling). 

Our work is focusing, firstly, on methods to incorporate uncertainty into the loads 

predicted by contaminant load models for suspended solids, copper and zinc. Current 

yield-based models traditionally provide single estimates of loads, ignoring potentially 

significant uncertainties introduced, for example, by the values adopted for the source 

yields which are often derived from limited data. We are developing a method to quantify 

this uncertainty using a Monte Carlo approach, implemented within a simple spreadsheet 

interface. The incorporation of uncertainty will improve our ability to discriminate 

between major contaminant sources and inform comparisons of differing scenarios. 

The second part of the work is a way to convert these predicted catchment loads into in-

stream concentrations. The catchment loads, calculated from a contaminant load model, 

are related to in-stream concentrations through an empirical relationship developed from 

State of the Environment monitoring data. This enables estimation of the likely median or 

95th percentile in-stream concentration for a given catchment load, and uncertainty 

ranges around these concentration estimates. We have developed useable relationships 

for Auckland and undertaken initial tests on data from the Greater Wellington region and 

Christchurch City. 

In combination, further development of these two methods aims to provide tools to 

undertake screening level assessments of contaminant loads and in-stream 

concentrations, for baseline and future scenarios, with uncertainty ranges for these 

estimates. This will enable more informed decision-making for catchment management 

under the NPS-FM. 
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1 INTRODUCTION  

Implementation of the National Policy Statement for Freshwater Management (NPS-FM) 

in urban catchments is likely to require quantitative models to enable limit-setting of 

contaminants. In urban catchments, suspended solids, copper and zinc are among the 

most common contaminants of concern. There are currently no nationally-adopted 

methods to predict metal loads derived from urban catchments or to predict 

concentrations within streams and hence a variety of methods have been developed and 

used. 

One of the more widely used models is the Contaminant Load Model (CLM; Auckland 

Regional Council 2010a) developed by Auckland Regional Council. This, and similar 

models such as NIWA’s Catchment Contaminant Annual Loads Model (C-CALM; 

Semadeni-Davies & Wadhwa 2014), calculate contaminant loads for a given catchment 

based on the types of land use (e.g., residential area) and land covers (e.g., roofing 

area). However, while these models provide an estimate of an annual contaminant load, 

they do not provide the information on in-stream concentrations for comparing to 

numerical objectives, as required by the NPS-FM. Furthermore, of the water quality 

models readily available that do predict in-stream concentrations (e.g., QUAL2E, Brown & 

Barnwell 1987), many were designed for predicting water quality downstream of point 

sources rather than diffuse catchment sources. 

To provide both catchment load and in-stream concentrations, several Councils have 

chosen modelling methods that couple load models to stream hydrological models. Such 

hydrological models typically require considerable resources to set-up and have 

substantial data requirements for calibration (e.g., continuous flow monitoring data). 

Furthermore, the nature of these models requires specialist personnel to undertake the 

modelling and long model run times may restrict the number of different scenarios that 

can be assessed. Such models may be out of reach for smaller Councils with fewer 

resources and with limited flow or water quality data. 

In this paper we present methods that NIWA has been exploring that will enable 

assessments against in-stream concentration-based attributes and the setting of source-

based load limits in catchments with minimal data. These include, firstly, a method for 

incorporating uncertainty assessments in the estimation of catchment contaminant loads 

and, secondly, a method for estimating representative in-stream contaminant 

concentrations from catchment load estimates. 

2 INCORPORATING UNCERTAINTIES INTO LOAD MODELS 

2.1 INTRODUCTION 

When using models to inform water quality management, or to compare against 

numerical objectives such as those set under the NPS-FM, incorporation of uncertainty 

assessment is a critical step in order to quantify the level of reliability of model results 

and provide a robust basis for decision making (Dotto et al. 2012). Simple, yield-based 

models such as the CLM typically provide single, point estimates of loads with no 

information on associated uncertainty. Part of NIWA’s exploration into new modelling 
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methods for NPS-FM implementation in urban settings has involved developing a means 

to incorporate uncertainty assessment in annual contaminant load models. In the 

description below, we illustrate the approach we have taken with reference to Auckland 

Council’s CLM, being the most widely known and used annual load model in New Zealand. 

However, the methods described can equally apply to similar models such as C-CALM. 

The CLM operates by dividing a catchment into source areas based on the types of land 

use and land cover. Mean annual loads of suspended sediment, total copper and total 

zinc are calculated for the catchment as the sum of the individual source loads, which 

represent the source area multiplied by a respective source yield. If stormwater 

treatment is present, the mean annual loads are reduced by an appropriate load 

reduction factor. Although the CLM was developed for use in the Auckland region, it, or a 

similar model, has been used in other parts of the country. 

The International Working Group on Data and Models, which operates under the 

IWA/IAHR Joint Committee on Urban Drainage, has been working on developing a 

common terminology and conceptual framework for assessing uncertainties in urban 

drainage modelling (Deletic et al. 2012). Figure 1, reproduced from Deletic et al. (2012), 

shows the key groups of uncertainty sources in the proposed framework and how they 

are interlinked. The diagram is annotated to indicate the sources of uncertainty in the 

CLM, which fall into two of the key groups: 

1. Uncertainty in the source areas within a catchment (model input data); and 

2. Uncertainty in the source yields and load reduction factors associated with 

stormwater treatment (fixed model parameters). 

Figure 1: Uncertainty sources in the CLM placed within the key groups of uncertainty 

sources and associated linkages identified for urban drainage models (Deletic et al. 2012) 

 

Uncertainty in the source areas may arise, for instance, from measurement inaccuracies 

or difficulties in identifying source types (e.g. classification of roofing materials). This 

uncertainty occurs during model implementation and can be reduced through better 

catchment characterization. The uncertainty in the source yields and load reduction is 

derived from limited data and/or a lack of knowledge on which to base the estimated 

values. These factors are inherent in the model and therefore for the purposes of this 

research we have focused on quantifying the uncertainty in this area. The focus of this 

paper is on methods used to define probability distributions for the source yields and load 
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reduction factors, as an alternative to the current approach which adopts a single value 

for each source yield and load reduction factors. 

2.2 DEFINING UNCERTAINTY IN SOURCE YIELDS  

Auckland Regional Council (2010b) suggests “low”, “best” and “high” values for the 

source yields based on uncertainties in the data from which they are derived, though 

there is little supporting information provided. We have used these values as a starting 

point, assuming samples are drawn from a uniform distribution within each range. Where 

possible we seek to refine this approach, exploring alternative methods to provide more 

information on the underlying distributions. The paragraphs below use the roof source 

yields as an example.  

The CLM roof source yields are largely derived from the concentrations of suspended 

sediment, copper and zinc measured in the Kingett Mitchell Diffuse Sources (2003) study 

of runoff from Auckland roofs. The yield for each roof source type is calculated as the 

mean of the measured concentrations multiplied by a mean annual runoff of 1000 mm 

year-1. There are several challenges in moving from this single-value approach to 

determining an underlying probability distribution, including: 

 Very few measured concentrations are available for many of the source types; 

 The extremes in runoff concentration, measured on an event-basis, do not directly 

inform the extremes of the source yields on an annual-basis. 

Whilst there are a number of different approaches which could be used to determine 

probability distributions, we have chosen (where sufficient samples are available) to apply 

a very simple build-up wash-off model of the form given by Shaw et al. (2010). The goal 

of the model is not a rigorous calibration, rather for it to inform the range of annual 

contaminant yields that may be expected, and therefore a daily timestep was considered 

sufficient given the data available. Parameter values were determined from the measured 

concentrations for events corresponding to special cases of the model (e.g. events 

following a long antecedent dry period, or events not separated by an intervening dry 

period). We then ran the model multiple times for each source type using a 42-year 

timeseries of daily rainfall data, allowing the parameter values to vary around the 

estimated values, and fitted probability distributions to the resulting series of mean 

annual yields. Table 1 shows the results obtained for zinc yields for galvanised steel. In 

each case, the yields best fit a normal distribution with the parameter values shown. 

Table 1: CLM best-estimate zinc yields for galvanised steel roofs (low and high values 

in brackets) compared with distributions estimated using the build-up wash-off model 

approach. Normal distributions provided the best fit to data in each case.   

Roof source type 
CLM yield 

(g/m2/year) 

Estimated normal distribution 

Mean 

(g/m2/year) 

Std dev. 

(g/m2/year) 

Galvanised steel 

(unpainted) 
2.24 (1.68, 3.19) 2.77 0.47 

Galvanised steel 

(poorly painted) 
1.14 (0.89, 1.62) 1.47 0.22 

Galvanised steel 

(well painted) 
0.15 (0.08, 0.20) 0.16 0.03 
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2.3 DEFINING UNCERTAINTY IN LOAD REDUCTION FACTORS 

The load reduction factors (LRFs) used in the CLM were selected based on professional 

judgement after a review of literature. They represent the proportion by which the mean 

annual contaminant load is reduced due to stormwater treatment devices or source 

control measures such as painting of roofs. At present, the CLM uses single values for the 

LRFs as given in Auckland Regional Council (2010b). To assign probability distributions 

for the LRFs we have used the range of removal efficiencies for different devices 

suggested by Semadeni-Davies and Wadhwa (2014), assuming a uniform distribution 

within each range. The efficiencies in that report are mainly based on literature review, 

and on modelling for rain gardens and wet ponds. The range in possible LRFs is very 

broad for many of the treatment devices. For example, for constructed wetlands treating 

roading sources, the CLM uses an LRF for total zinc of 60%, whilst the potential reduction 

ranges from a 50% reduction up to 90% reduction.  

This represents a first-cut approach for our uncertainty modelling given that most LRFs 

reported in the literature are based on individual events rather than on a mean annual 

basis, therefore the extremes in reported values do not necessarily (and indeed are not 

likely to) reflect the extremes in the mean annual value. 

2.4 INCORPORATING THE UNCERTAINTY 

We have developed a proof-of-concept model that propagates uncertainty in the source 

yields and load reduction factors through to the model output (i.e. the mean annual 

loads) via Monte Carlo simulation. Monte Carlo involves repeated iterations with samples 

of the selected model parameters drawn from underlying probability distributions 

(Sriwastava and Moreno 2017). The method is implemented using @RISK1, which 

provides a convenient platform for carrying out Monte Carlo simulations in Microsoft Excel 

(the existing platform for the CLM). To date we have included the uncertainty in roofing 

and roading source yields and in LRFs. A complete implementation incorporating all 

sources of uncertainty (including paved areas) is as-yet a work-in-progress. 

3 RELATING CATCHMENT LOADS TO INSTREAM 
CONCENTRATIONS 

3.1 DEVELOPMENT OF REGRESSION RELATIONSHIPS 

Whilst annual contaminant load models are useful for comparing between development 

scenarios and management actions, they do not provide any explicit information on in-

stream water quality; a fundamental requirement for implementation of the NPS-FM. To 

provide this link, we are developing a simple method that relates catchment contaminant 

loads to instream concentrations. 

We collated data for suspended solids, copper and zinc (total and dissolved forms) from 

Auckland Council’s State of the Environment dataset, measured monthly at sites on a 

range of urban, semi-urban and rural streams. Monitoring data from January 2010 to 

December 2012 (3 full years of data) was used in the assessment to provide an 

assessment of the “current” water quality state for comparison to estimated catchment 

loads. Median and 95th percentile statistics were calculated using the robust Regression 

on Order statistics method to incorporate data that were below detection limits (using the 

NADA package in R, Lee 2017).  

                                                      

1 http://www.palisade.com/risk/ 



Water New Zealand’s 2018 Stormwater Conference 

For each stream site location, the upstream catchment was mapped in GIS and the land 

cover and land use determined, based on land use layers from around 2010/2011. The 

estimated annual loads of suspended solids, total copper and total zinc were then 

calculated using the CLM. The total contaminant load from each catchment was then 

‘normalised’ (divided by the total catchment area to give an overall annual yield for each 

catchment), enabling comparisons between catchments of differing sizes. 

The estimated annual yields (on a log-scale) were then plotted against the log of median 

or 95th percentile of the measured water quality. For the metals, this showed a linear 

relationship between the two, and a simple linear regression was fitted in R (R Core Team 

2017) for each water quality parameter and statistic. Figure 2 shows the relationship 

between the measured median dissolved copper and total copper concentrations and the 

modelled copper yields. Figure 3 shows the relationship between measured dissolved zinc 

concentrations and zinc yields, using both the median and the 95th percentile statistics. 

For most of the fits with metals, the R-squared values were above 0.7 (Table 2).  

Figure 2: Relationship between copper yields and dissolved and total copper 

concentrations with 95% confidence intervals around the fitted line. 

  

Figure 3: Relationship between total zinc yields and a) median and b) 95th percentile 

dissolved zinc concentrations with 95% confidence intervals around the fitted line. 

   

 

(a) (b) 
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Table 2: Linear model regression results  

 Median concentrations 95th percentile concentrations 

 R2 Slope R2 Slope 

Suspended solids 0.08 -0.17 0.008 0.08 

Dissolved copper 0.72 0.51 0.78 0.53 

Total copper 0.80 0.60 0.54 0.81 

Dissolved zinc 0.71 1.1 0.78 1.0 

Total zinc 0.80 1.1 0.82 0.93 

 

For suspended solids there was only a very weak relationship between the yields of total 

suspended solids and the measured in-stream concentration (Figure 4). Unlike the 

metals, suspended solids showed an inverse relationship (albeit a very weak one) for the 

median concentrations: lower concentrations were found in stream catchments with the 

highest yields. For the 95th percentiles, there was no clear relationship between measured 

concentrations and suspended solids yields. This suggests that for suspended solids, 

reductions in catchment sediment loads would not necessarily result in reductions in in-

stream TSS concentrations. 

For the metals, the slope of the regression lines is not always equivalent to a 1:1 

relationship between loads and concentrations. For example, a two-fold increase in total 

zinc yield in the catchment would be expected to increase the median total zinc 

concentrations in the stream by approximately double. However, for copper, a two-fold 

increase in the yield results in only a 1.5-fold increase in the total copper concentration in 

the stream. Furthermore, for total copper, the slope is not the same for the median 

concentration and the 95th percentile. This is an important finding as assumptions of a 

1:1 increase have often been used in modelling of rural stream water quality (e.g., Green 

& Daigneault 2018), but this may not apply to urban catchments or all urban 

contaminants. 

Figure 4: Relationship between suspended solids yields and measured total suspended 

solids concentrations (median and 95th percentiles). 

 



Water New Zealand’s 2018 Stormwater Conference 

3.2 POTENTIAL APPLICATIONS 

This simple empirical relationship has a number of potential applications in freshwater 

management and modelling. 

1. For streams where there is no monitoring data, current in-stream concentrations 

can be estimated from the calculation of the catchment annual load (converted to 

a yield). Use of prediction bands around the fitted regression line would provide a 

means to estimate the uncertainty in the predicted in-stream concentration (see 

Section 4.4) arising from factors such as variability in catchment hydrology. 

2. For streams where there is existing monitoring data, future in-stream 

concentrations (and uncertainties in these predictions) can be estimated from the 

calculation of the catchment yield under different scenarios (see case study below, 

Section 4). The simplicity of this method allows for rapid testing of numerous 

scenarios when linked to a simple CLM. 

3. Estimation of the maximum load that can be discharged from a catchment to 

achieve a concentration-based in-stream water quality objective. For example, for 

the 95th percentile stream concentration to meet the ANZECC (2000) guideline of 

8 mg/m3 of dissolved zinc, the maximum catchment yield would be around 

0.014 g/m2/year. 

4. Identification of streams with contaminant sources that are additional to those 

included in contaminant load models, such as a point source discharge. For 

example, the zinc concentrations in Riverhead Stream are much higher than 

predicted for a site with that yield (Figure 5), suggesting there are additional zinc 

sources (not represented in the CLM) at that location. 

Figure 5: Regression plot for dissolved zinc highlighting position of Riverhead Stream 

well above expected concentration. 

 

3.3 EXTENSION TO OTHER URBAN AREAS 

We next investigated whether a similar relationship could be found between catchment 

loads and monitoring data for the Greater Wellington region and Christchurch City. The 

contaminant loads for these areas were estimated using Auckland’s CLM, based on 

analysis of aerial photographs to identify land use and assuming default proportions of 

Riverhead Stream 
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surface cover types for each land use. This approach to estimating loads is subject to 

considerable uncertainty compared to calculation of the actual source areas and would 

need to be refined prior to finalising regression relationships with in-stream 

concentrations. Furthermore, it is expected that annual loads and yields may differ 

between different geographic regions due to factors such as differences in topography 

and soil types. However, we adopted this approach as a useful starting place to 

investigate relationships between concentrations and yields in other urban centres. Water 

quality data was collated from Greater Wellington Regional Council and Christchurch City 

Council SOE monitoring data. While both councils monitor suspended solids, dissolved 

copper and dissolved zinc, we have focused our investigation on dissolved metals for 

these areas. 

We expected that there would be differences in the relationship between instream 

concentration and contaminant yield for areas with different rainfall regimes, given that 

concentration is a function of runoff volume as well as catchment load. We found that the 

yield-concentration relationship for Greater Wellington was similar to that for Auckland 

(Figure 6), reflecting that the two regions have similar annual rainfall depths. In contrast, 

the relationship appeared quite different for Christchurch, which has approximately half 

the annual rainfall of the other two regions. 

Figure 6: Regression plot for dissolved zinc showing (a) differing relationships for 

Auckland, Wellington and Christchurch urban areas (b) New regression line for 

Christchurch when spring-fed streams are excluded. 

  
 

There was considerable scatter in the data for Christchurch, particularly in relation to 

sites with moderate to high yields, where there appeared to be 2 groups. One of these 

groups, with lower concentrations than expected from the yields, contained sites from 

spring-fed streams, where the springs are from relatively deep aquifers recharged from 

outside the topographical catchment (Figure 6b). One explanation is that these sites do 

not follow the same pattern as other Christchurch streams because the spring-fed flow 

provides substantial dilution of the surface-sourced contaminants. However, removal of 

the data points relating to streams fed by groundwater from outside the catchment did 

not greatly alter the Christchurch regression line (Figure 6(b)), indicating that other 

factors need to be taken into account in explaining regional differences in yield-

concentration relationships. This is an area for further investigation. 

(a) (b) 
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The Christchurch monitoring data also included sites on tidal reaches of streams, which 

were not included in the Auckland and Wellington data sets. We excluded these tidal 

reaches as such sites are not expected to follow the same relationship due to the 

additional physical and chemical processes (e.g., flocculation and deposition) that occur 

in these reaches and which need to be explicitly included in all stream models. 

Overall, the testing showed that while a regression-based approach can be used outside 

the Auckland region where there are sufficient data, the regression would need to be 

developed for each region of application from local monitoring data and a region-specific 

catchment load model. 

4 CASE STUDY EXAMPLE 

4.1 INTRODUCTION 

With further development, the two methods described above aim to enable prediction of 

catchment loads and in-stream concentrations for NPS-FM implementation. The 

assessment of uncertainty in contaminant load modelling provides a range in the 

estimate of annual contaminant loads, which can assist decision-makers in assessing 

whether there are likely to be real differences in contaminant loads between different 

scenarios. The range of catchment load estimates can then be used to predict the likely 

in-stream concentrations (median and 95th percentile), also with an estimate of the 

uncertainty in these concentrations. The following case study description provides an 

illustration of how the two methods might be applied to inform NPS-FM implementation in 

an urban catchment. 

4.2 PUHINUI STREAM CATCHMENT 

Puhinui Stream drains a predominantly urban catchment in South Auckland (Figure 7). 

The urban-zoned land is a mixture of residential, commercial and industrial, as well as a 

large area of urban parks (including the Auckland Botanic Gardens). The estimated 

baseline yields of zinc and copper are amongst the highest in the Auckland region, as are 

the measured metal concentrations at Auckland Council’s stream monitoring site (Table 

3). 

Figure 7: Land covers in the Puhinui Stream catchment. 
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Table 3: Measured copper and zinc concentrations at Auckland Council’s Puhinui 

Stream monitoring site 

 Median metal concentration 

(mg/m3) 

95th percentile metal 

concentration (mg/m3) 

Dissolved copper 1.4 2.6 

Total copper 2.0 4.4 

Dissolved zinc 17 130 

Total zinc 26 170 

 

Implementation of the NPS-FM is likely to involve comparing representative 

measurements such as those in Table 3 against numeric objectives (or attribute states). 

In the absence of national objectives, we have compared the measured concentrations 

from Puhinui Stream to an illustrative set of numeric attribute states (Table 4) based on 

the ANZECC (2000) guidelines for copper and zinc2. These follow the example of the 

currently available NOF attributes that relate to toxicity, which compare a) the median 

measured concentrations to toxicity guideline values for varying levels of protection, with 

the “bottom line” based on the guideline value for protection of 80% of species; and b) 

the 95th percentile or maximum measured concentrations to toxicity guidelines based on 

acute toxicity. 

Table 4: Illustrative copper and zinc objectives. 

Attribute 

State  

Numeric Attribute State (mg/m3) for: Narrative Attribute State  

Dissolved Copper Dissolved Zinc 

 Annual 

Median 

Annual 95th 

percentile  

Annual 

Median 

Annual 

95th 

percentile 

 

A ≤1 ≤1.4 ≤2.4 ≤8 

99% species protection level: No 

observed effect on any species 

tested 

B 
>1 and 

≤1.4 

>1.4 and 

≤1.8 

>2.4 and 

≤8 

>8 and 

≤15 

95% species protection level: 

Starts impacting occasionally on 

the 5% most sensitive species 

C 

>1.4 

and 

≤2.5 

>1.8 and 

≤4.3 

>8 and 

≤31 

>15 and 

≤42 
80% species protection level: 

Starts impacting regularly on the 

20% most sensitive species 

(reduced survival of most 

sensitive species) 

National 

Bottom 

Line 

2.5 4.3 31 42 

D >2.5 >4.3 >31 >42 

Starts approaching acute impact 

level (i.e. risk of death) for 

sensitive species 

 

                                                      

2
 We have used the default guidelines for a hardness of 30 g/m3 to be conservative. 
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Comparison of the measured copper and zinc concentrations in Puhinui Stream against 

the illustrative objectives in Table 4 indicates that the attribute state for dissolved copper 

would be band C (based on the 95th percentile), whereas for dissolved zinc the attribute 

state would be band D (based again on the 95th percentile). For this case study example, 

we have assumed that the catchment community wishes to investigate options to 

decrease the zinc concentrations and achieve a higher attribute state for the Puhinui 

Stream.  

4.3 ESTIMATING ZINC LOADS 

We estimated the mean annual load of zinc from the Puhinui catchment using the CLM, 

incorporating assessment of uncertainty (as described in Section 2), under four different 

scenarios: 

1. Baseline scenario – this represents the existing catchment landuse, assuming no 

stormwater treatment 

2. Source control scenario – this represents the baseline scenario with painting of all 

unpainted or poorly painted galvanised steel roofs 

3. Wetland treatment scenario – this represents the baseline scenario with wetland 

treatment of all roof, road and paved source areas 

4. Source control with wetland treatment scenario – this represents the baseline 

scenario with both the source control and wetland treatment options in place. 

Table 5 presents the mean annual loads of zinc from the catchment predicted under the 

four scenarios, including the existing CLM loads for comparison. The results represent 

illustrative values only, since a complete implementation of the model with all sources of 

uncertainty addressed remains a work-in-progress. Sources of uncertainty reflected in 

the results include the roof and road source zinc yields as well as the LRFs. The yields for 

paved surfaces and all remaining source areas are held equal to their existing (fixed) CLM 

values. It can be expected that the ranges of the predicted loads will be somewhat 

broader once uncertainty in the yields for paved surfaces and other sources has also 

been accounted for. 

Table 5: Mean annual loads of zinc (t year-1) predicted from the Puhinui catchment 

using both the existing CLM and the CLM with uncertainty. Values for the CLM with 

uncertainty reflect the mean produced by the Monte Carlo simulation with 10th and 90th 

percentiles in brackets 

  Mean annual zinc load 

 Existing CLM CLM with uncertainty 

CLM baseline 1.25 1.39 (1.25, 1.53) 

Source control (roof paint) scenario 0.73 0.72 (0.69, 0.76) 

Wetland treatment scenario 0.75 0.59 (0.39, 0.83) 

Source control with wetland treatment 0.35 0.26 (0.16, 0.35) 
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The source control scenario is influenced by uncertainty in the source yields only (since 

this scenario does not involve any stormwater treatment), whereas the wetland 

treatment scenario is influenced by uncertainty in both the source yields and LRFs. These 

LRFs have a wide range of possible values, as discussed in Section 2.3. As a result, there 

is a much greater range in the mean annual loads predicted for the wetland treatment 

scenario than for the source control scenario (Figure 8). 

This case study illustrates some of the benefits of assessing uncertainty within the load 

model. Firstly, even though the annual loads are estimated as ranges, there are still clear 

differences between the baseline and the mitigation scenarios (the 10th and 90th 

percentiles do not overlap), giving confidence in the value of mitigation (although bearing 

in mind that not all sources of uncertainty are included in this example). Secondly, these 

results also show differences in the potential variation in outcomes delivered by different 

mitigations. For instance, whilst the source control and wetland scenarios provide similar 

results using the existing CLM, once uncertainty is taken into account a much wider range 

in loads is predicted for the wetlands scenario than for the source control scenario. In this 

example, the benefit of the source control scenario appears to be more certain, however 

the wetland scenario has the potential to achieve a much larger load reduction. When 

combined with information on the costs of alternative mitigation scenarios, this kind of 

information has the potential to be highly informative for decision-makers involved in 

NPS-FM implementation. 

Figure 8: Comparison of scenarios for zinc management in Puhinui Stream catchment. 

Error bars represent 10th and 90th percentiles. 

 

4.4 ESTIMATING IN-STREAM ZINC CONCENTRATIONS 

The predicted annual zinc loads described above have been used to predict in-stream 

concentrations from the yields-to-concentrations regression. For this prediction, we have 

used the regression relationship described in Section 3.1 after removing the Riverhead 

Stream site, which is a clear outlier. This analysis (Figure 9, Table 6) suggests that an 

attribute state of “C” could be achieved by implementing either the source control (roof 

painting) or wetland treatment scenarios. An attribute state of “B” could be achieved by 

implementing both measures in combination.  
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Figure 9: Plot of median dissolved zinc concentrations versus zinc yields with yields 

for the four scenarios shown in vertical dashed lines. 

 
 

Table 6: Predicted zinc concentrations and attribute states for each scenario 

  
Baseline 

scenario 

Source 

control 

scenario 

Wetland 

treatment 

scenario 

Source control 

and wetland 

treatment 

Yield (g/m2/yr) 0.11 0.057 0.047 0.021 

Predicted median zinc 

concentration (mg/m3) 
20 9.3 7.3 2.7 

Attribute state from median C C B B 

Predicted 95th percentile 

zinc concentration (mg/m3) 
75 36 29 11 

Attribute state from 95th 

percentile 
D C C B 

Overall attribute state D C C B 

 

Furthermore, because a linear regression is a statistical relationship, ‘prediction intervals’ 

for the regression can be used to assess the likelihood of reaching a particular attribute 

state, at a given yield. A prediction interval is an estimate of an interval in which future 

observations will fall, with a certain probability, based on the existing observations (the 

regression). For a yield of 0.11 g/m2/year (baseline scenario), there is approximately an 

80% likelihood that the 95th percentile bottom line concentration will be exceeded. For 

the yield of 0.057 g/m2/year (source control), there is only a 40% chance that the 95th 

percentile bottom line concentration will be exceeded. For the yield of 0.021 g/m2/year 

(source control and wetland treatment), there is only a 2.5% chance that the 95th 

percentile bottom line concentration will be exceeded. 
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Figure 10: Shaded prediction bands for 95th percentile concentrations vs zinc yields. 

The darkest shading represents the concentrations with 20% likelihood of occurring for a 

given yield. The mid-grey represents the concentrations with 60% likelihood and the light 

grey with 95% likelihood. Concentrations in the white area have a low likelihood of 

occurring. The bottom line for the 95th percentile concentration is shown in red and yields 

from three scenarios shown in vertical dashed lines. 
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5 CONCLUSIONS  

The implementation of the NPS-FM in urban catchments is likely to be a challenging 

exercise. Models can help, but they need to be fit-for-purpose and capable of generating 

useful information for decision-makers. In this paper we have described two 

complementary areas of exploratory research that, with further development, aim to 

provide support for NPS-FM implementation.  

The first recognizes that there are many sources of uncertainty in water quality 

modelling. Some sources are inherent in the model while others occur during model 

implementation. Whilst it is relatively easy to identify the sources of uncertainty, 

quantifying those uncertainties is less straightforward. Such uncertainties can propagate 

through a model, resulting in model outputs taking a broad range of values. An absence 

of any assessment of model uncertainty creates difficulties for decision-makers trying to 

consider the implications of alternative management scenarios. We have described two 

ways that we are attempting to quantify uncertainties in annual contaminant load 

models, one through modelling and the second through literature review. A case study 

application of the methods has demonstrated the value of incorporating uncertainty 

assessments in scenario modelling, for instance showing that uncertainty need not mean 

a lack of discrimination between scenarios.  
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A second problem for decision-makers involved in implementation of the NPS-FM is an 

absence of explicit effects-based information when considering catchment load estimates. 

We have shown that an empirical relationship (between measured metal concentrations 

and catchment yields based on contaminant load modelling) offers a simple way to 

predict in-stream contaminants concentrations for sites with no monitoring data. In our 

case study, we also showed how the method could be used to examine the probability of 

achieving improved attribute states under alternative future management scenarios. 

In combination, further development of these two methods aims to provide tools to 

undertake screening level assessments of freshwater management outcomes in data-

poor catchments. In further work we intend to expand and refine the coverage of 

uncertainty assessments in annual contaminant load models and investigate additional 

national and regional level relationships between contaminant loads and instream 

concentrations. 
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