
Application of Artificial Neural 

Network Model to Forecast Runoff 

for Waikato River Catchment 
 

MR. ZHIMIN ZHENG1, DR. BABAR MAHMOOD2 
 
1 Student, 2 Staff at Unitec Institute of Technology, Auckland, New Zealand 

 

 
ABSTRACT 
 

As we know that over the past decade or so the Artificial Intelligence (AI) 
techniques (e.g. ANN - Artificial Neural Network & FIS - Fuzzy Interference 

System) have been used as an alternative modelling tools in water resources 
management studies. Runoff generated from a catchment as a result of a rainfall 
event is a very complex hydrological process as it depends on climatological (i.e. 

rainfall depth, duration and intensity, etc.) and geographical (i.e. soil type, 
infiltration rate, evapotranspiration, etc.) factors of the catchment. The present 

study is about the application of Artificial Neural Network (ANN) model to 
forecast runoff from the Waikato River catchment areas of New Zealand. Similar 

to other modelling approaches, successful application of ANN is also dependant 
on the selection of appropriate input factors. To investigate this, the study 
applied three different approaches for the selection of appropriate input vectors 

to be used for the ANN model. The study demonstrated that ANN can 
successfully forecast the runoff generated from a catchment using antecedent 

rainfall and runoff data series identified on the basis of cross-correlation and 
auto-correlation coefficients. The ANN models developed using three approaches 
(i.e. sequential, pruned and non-sequential time series) were able to predict 

runoff generated from the Waikato River catchment using antecedent 
rainfall/runoff data. The study showed that the ANN models were sensitive to the 

selection of appropriate input vector. The ANN model developed using the non-
sequence approach performed well, and gave the highest R2 and NSE values (i.e. 
97-98 %) during the validation and testing phases of this modelling exercise. 
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1 INTRODUCTION 
 
Reliable and accurate estimation of runoff generated from a 

catchment/watershed as a result of the rainfall incident is an important area of 
research in hydrology. Therefore, computer models (for catchment hydrology) 

and AI techniques are being used extensively for more accurate runoff quantity 
estimation. The rainfall-runoff relationship is considered to be one of the most 
complex hydrological processes to be modelled because of the involvement of a 

number of variables in the modelling process and enormous spatial and temporal 
variability of watershed characteristics. To model this non-linear complex process 

of rainfall-runoff, numerous hydrological models have been proposed. Broadly 
speaking, these models can be divided into two categories i.e. knowledge driven 

(physics-based) models, and data driven (system theoretic) models (Dooge, 
1977). Knowledge-driven models make use of different mathematical equations, 
which may be either empirical or partial differential equations to model each and 

every physical process (of the hydrological cycle) including evapotranspiration, 
infiltration, surface and groundwater flow etc. Examples of these models include 

Standford Watershed Model – SWM (Linsley & Crawford, 1960), Tank Model 
(Sugawara, 1995), the Soil Moisture Accounting and Routing - SMAR Model 
(O’Connell et al., 1970; Tan & O’Connor, 1996), Sacramento Model (Burnash et 

al., 1973), Xinanjiang Model (Ren-Jun, 1992). Although the results of these 
models are considered satisfactory, but these models are data hungry and 

therefore have a limited use so far.   
 
The black-box data driven models, on the other hand, requires less data (as 

compared to physics-based models) to model this complex non-linear rainfall-
runoff relationship (without considering various physical processes of the 

hydrological cycle). Examples of the conventional black-box data driven models 
includes the Auto Regressive Integrated Moving Average (ARIMA) or Seasonal 
ARIMA with exogenous input (SAIMAX) and Multiple Linear Regression (MLR). 

The ARIMA, SAIMAX and MLR models are a form of regression analysis models 
that use time series data to predict future trends. The details of these models 

can be found in many statistics books such as Rawlings at al. (1998); Wang et 
al. (2003), and Kleinbaum et al. (2013). These models have been successfully 
used in many previous hydrological forecasting studies (Sala et al., 1980; 

Cleaveland & Stahle, 1989; Nourani et al., 2011; Zhang et al., 2011; Adamowski 
et al., 2012). The ARIMA, SAIMAX and MLR models are simple to develop and 

use. However, in these models, the future value of a variable is assumed to be a 
linear function of several past observations and random errors. It is well known 
that these linear models are described by a linear equation which is of the form y 

= ax + b where a and b are the constants and y and x are the dependant and 
independent variables, respectively. Therefore, it would be inappropriate to use 

linear functions or relationships if the underlying process under investigation is 
non-linear i.e. rainfall-runoff relationship. 

 
With the advent in knowledge, a special type of black-box driven data models 
called ANN emerged and received great attention. The ANN was originally 

developed as a model of information storage and computing by neuronal 
processes found in nature (McCulloch & Pitts, 1943). Details of emergent 

computational properties of the ANN are also discussed in Hopfield (1982). The 
learning aspects of neural networks are described in (Rumelhart et al., 1986). 
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One of the features of the ANN technique/method is that it provides a 
computational or mathematical technique, which is powerful for modelling 

systems where the explicit form of the relationship between the variables 
involved is unknown (Fausett, 1994). 

 
The ANN technique has been successfully employed for resolving various 
problems in numerous branches of science and engineering.  In the field of 

hydrology, ANN method was used for the first time for forecasting rainfall by 
French et al. (1992), also Shamseldin (1997) pioneered ANN application in 

modelling the rainfall-runoff relationship. The ANN based rainfall-runoff models 
have been developed using the observed input and output rainfall and runoff 
data, respectively without considering the detailed understanding of the complex 

physical laws governing the rainfall-runoff processes. The advantages of ANN 
models over the other modelling approaches include less data requirements, and 

short development time to model. Furthermore, no great expertise is required to 
develop and apply ANN. Further, ANN has been successfully applied in many 
previous hydrological studies such as Hsu et al. (1995); Dawson and Wilby 

(1998); Sajikumar and Thandaveswara (1999); Tokar and Johnson (1999); 
Sudheer et al. (2002); Lallahem and Mania (2003); Jain et al. (2004); Senthil et 

al. (2005); Antar et al. (2006); and Nourani et al. (2009, 2011). A 
comprehensive review of ANN in hydrology can be found in the ASCE Task 

Committee on Application of the ANNs in hydrology (Committee, 2000a, 2000b). 
 
To the author’s knowledge, a limited work has been undertaken in terms of 

application of ANN to model the rainfall-runoff relationship in New Zealand. From 
water resources’ management point of view, it is important to correctly estimate 

runoff /flow rate generated from a catchment area. The main goal of this study 
was to develop an ANN model to predict runoff using antecedent rainfall and 
runoff data collected from Wangamarino control structure located in Waikato 

river catchment areas. Therefore, this paper provides a brief introduction to ANN 
method and then presents the application of this intelligent model (i.e. ANN) 

having self-learning ability to predict runoff using past rainfall-runoff data for the 
studied catchments. The specific objectives of this study were to: (i) learn the 
fundamentals of the Neural Network Tool box of Matlab software; (ii) investigate 

different approaches available for the purpose of determining optimum input 
vectors for the ANN model, (iii) check the sensitivity of ANN models performance 

to the selection of appropriate input vectors, and (iv) identify the best ANN 
model by comparing the flow duration curves. 
 

2 METHODOLOGY 
 

2.1 ANN MODEL 
 
The fundamentals of ANN can be found in Priddy and Keller (2005); Graupe 
(2007). However, a brief introduction of ANN is given here from reader’s point of 

view. The ANN is a computing paradigm that is inspired by the working of the 
human brain and nervous system. The neurons in the biological neural networks 

receive information from the senses situated at various locations in the network. 
These neurons are linked to each other by a connection called synapse. These 
neurons produce a proper response to the information received by releasing 

chemicals which cause a synapse to conduct an electric current.  The neuron 
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which receives information can either pass this information to the other neuron 
in the network or neglect its input. This causes damping of the information.  The 

ANN can be formally defined as follows “A neural network is a parallel, 
distributed information processing structure consisting of processing elements 

(which can possess a local memory and can carry out localized information 
processing operations) interconnected via unidirectional signal channels called 
branches (‘fans out’) into as many collateral connections as desired; each carries 

the same signal – the processing element output signal. The processing element 
output signal can be of any mathematical type desired. The information 

processing that goes in within each processing element can be defined arbitrarily 
with the restriction that it must be completely local; that is, it must depend only 
on the current values of the input signals arriving at the processing element via 

impinging connections and on values stored in the processing element’s local 
memory” (Hecht-Nielsen, 1988). 

 
Neurons in the ANN are denoted to as the computational elements and also 
considered as the basic-building blocks of ANN. Neurons in the ANN are arranged 

in layers. Neurons in each layer are linked to neurons in the next layers through 
connections called weights. The activation state of the neurons of a network is 

the state of the system at a certain point in time. It is the pattern of connectivity 
that governs how a network will respond to an arbitrary input. The propagation 

rules define the way net input to a neuron is calculated from numerous outputs 
of adjacent neurons. Typically, net input is the weighted sum of the inputs to the 
neurons. The activation rule also called transfer function calculates the new 

activation value of a neuron based on the net input. Based on the data presented 
to the ANN, an ANN tries to learn the relationships that are contained within the 

data by adjusting its connection weights and biases. The algorithm used to 
optimize these weights and biases is called training or learning algorithm. These 
training algorithms may be supervised learning or unsupervised learning. 

Different parameters of the ANN are varied based on the type of the ANN used 
Beale et al. (2015). 

 
2.1.1 FEED-FORWARD NEURAL NETWORK (FFNN) 
 

There are numerous types of Artificial Neural Networks (ANNs) such as FFNN, 
Generalized Feed-Forward Neural Network (GFNN), Radial Basis Function Neural 

Network (RBFNN), Adaptive Neuro-Fuzzy Inference System (ANFIS), but the 
FFNN with back-propagation is considered to be the most widely used neural 
network (Principe et al., 2000; Mutlu et al., 2008; Eluyode & Akomolafe, 2013; 

Amirhossein et al., 2015), and therefore FFNN was used in this study. FFNN is 
also called as Multilayer Perceptron Neural Network (MLPNN). The FFNN consists 

of a number of neurons organized in numerous layers. Normally, it is comprised 
of three layers i.e. an input layer, a hidden layer and an output layer. The 
number of neurons in each layer varies. Each neuron in all layers is linked to the 

neuron in the next layer through the connections called weights as shown in 
Figure 1. The symbols x1, x2, … xn refer to the external inputs to the neural 

network, which is the rainfall data that was used in this study. The wH
12 refers to 

the connection weight between the first neuron in the hidden layer and the 
second neuron in the input layer. Likewise, wO

12 in Figure 1 represents the 

connection weight between first neuron in the output layer and the second 
neuron in the hidden layer. Similar weight notation is assigned to each 

connection weight in Figure 1. Each neuron obtains an array of inputs and yields 
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an output. The output of a neuron in the input layer will be input for the neuron 
in the next hidden layer. Similarly, the output of the neuron in the hidden layer 

will be input for the next output layer. Each neuron in all layers processes its 
input by a function known as the neuron transfer function. The neurons in the 

input layer have a connection with the neuron in the hidden layer while the 
neuron in the output layer is also only connected to the neuron in the hidden 
layer. There is no direct connection between the neuron in the input layer with 

those neurons in the output layer. The neurons in the input layer just perform an 
identity map between its input and output activity as follows (Principe et al., 

2000): 
 
𝑓(𝑥𝑖, 𝑤𝑖)  = 𝑥𝑖       (1) 

 
The inputs to the neurons in the hidden layer (each of the output of neuron in 

the input layer) and the output layer (each of the output of the neuron in the 
hidden layer) are multiplied by their corresponding weight and the bias added 

according to the following equation (Principe et al., 2000): 
 

𝑌𝑛𝑒𝑡 =  ∑ 𝑌𝑖𝑤𝑖 + 𝑤0
𝑁
𝑖=1       (2) 

 

Where N is the total number of neurons in the previous layer, Yi is the output of 
the neuron in the previous layer and wo is the bias value added to the neuron.  
 

 
 

 
 

 

 
 

 
 

 

 
Figure 1. Feed-Forward Neural Network (FFNN). 

 

2.2 STUDY AREA 
 
The Waikato catchment is the largest catchment in the north island of New 
Zealand with a total area of about 14500 km2. The Waikato River is about 425 

Km in length and it is the longest river in New Zealand. It originates from the 
Lake Taupo, to discharge into the Tasman Sea at Port Waikato, which is 

approximately 30 km south of Auckland. The Waikato River is an important 
source of water supply, recreation and hydro-power generation in New Zealand 
(Khan et al., 2014). The existence of eight dams and nine hydroelectric stations 

on the river makes it economically vital for the country.  
 

2.3 INPUT DATA 
 

Daily rainfall and discharge data of gauging stations located in Waikato River 
catchment was obtained from the Environment Waikato Department, New 
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Zealand. Ten years daily rainfall-runoff data starting from 24th May 2002 of 
Waikato River catchment was used in this study. Data from sixteen rainfall 

stations was used to calculate the average depth of rainfall in the catchment. The 
arithmetic mean method was employed to compute the average in the present 

study because of its simplicity. The concurrent discharge data used in the study 
was the daily averaged data measured at the Whangamarino Control Structure 
on the Waikato River. The station was selected as it covers a maximum 

catchment area of 13500 km2 of the Waikato River.  
 

2.4.1 SELECTION OF NEURAL NETWORK TYPE 
 
The Matlab neural network tool was used in this study to develop a runoff 

forecasting model. The neural network type used in this study was the FFNN 
with the back-propagation algorithm as it is considered to be the most common 

neural network used in hydrological applications (Committee, 2000a, 2002b; 
Mutlu et al., 2008; Eluyode & Akomolafe, 2013; Amirhossein et al., 2015), also 
stated earlier. 

 
2.4.2 SELECTION OF TRANSFER FUNCTION 

 
One of the important parameters of ANN is the selection of the transfer function 

which controls the generation of output in a neuron. The transfer function should 
be differentiable as most multilayer neural networks are based on optimization 
methods that use first and second order derivatives Caudill (1990). One of the 

most common activation functions for back-propagation neural networks is 
sigmoid nonlinearity (Haykin & Lippmann, 1994). The present study therefore 

used the default hyperbolic tangent function for the neurons of the hidden layer. 
This transfer function is continuous, differentiable and monotonically increasing 
and is given by the following equation (Beale et al., 2015): 

 

𝑓(𝑥) =  
1−𝑒𝑥

1+𝑒𝑥       (3) 

 

This transfer function takes the input, which can be in the range of plus infinity 
to minus infinity, and converts the output into the range -1 to 1. The default 
linear transfer function was used for the neurons of the output layer which yields 

the output into the range minus infinity to plus infinity.  
 

2.4.3 SELECTION OF HIDDEN LAYER NEURONS 
 
Performance of ANN model is also very sensitive to the selection of a number of 

neurons in the hidden layer. The selection of the number of hidden neurons is 
important in obtaining reliable results. The number of neurons in the hidden 

layer can be from one neuron to infinity. The selection of a small number of 
neurons in the hidden layer may decrease performance of the network as the 
network will have few degrees of freedom. However, the use of too many hidden 

neurons may lead to over-fitting. Over fitting is the case when the model gives 
good results during training but is unable to re-produce the similar results during 

testing. Over fitting means that the ANN model learns to reproduce the noise of 
the data or the data pairs itself rather than trends in the data set as a whole. 

Over fitting can be avoided by changing the number of neurons in the hidden 
layer. In the present study, the selection of an appropriate number of hidden 



7 

 

neurons was done by a trial and error procedure in a similar manner as reported 
in previous studies (e.g. Nourani et al., 2011; Shamseldin, 1997; Wang & Ding, 

2003; Tiwari & Chatterjee, 2010; Adamowski & Sun, 2010). The trial and error 
procedure involves training the network and evaluating its performance over a 

range of different increasing values of hidden layer neurons in order to obtain 
near maximum efficiency with the smallest number of neurons as necessary 
(Hammerstrom, 1993). The number of neurons in the hidden layer was varied in 

the range of 5 to 40 to find the best results by the trial and error method in this 
study. This range was selected in order to cover a wide range of neurons in the 

hidden layer. 
 
2.4.4 SELECTION OF INITIAL WEIGHTS AND STOPPING CRITERIA  

 
The learning of the neural networks from the observed data also is very much 

dependent on the selection of initial weights and also on the stopping criteria of 
the learning (Beale et al., 2015). The initial weights were randomly generated 
between -1 to 1 in the software ANN tool box while the cross validation method 

was used as the criteria for the early stopping of the training. This technique is 
based on dividing the data into three subsets, namely, training, validation and 

testing. The training sub-set of the data was used for the calculation of the 
gradient and updating the network weights and biases. The second validation 

data sub-set was used to determine the stopping criteria, and training was 
stopped when the mean square error reached a minimum in the validation 
phase. The network weights and biases were frozen at that point. The third data 

sub-set was the testing data set which was used to verify the network 
performance.  

 
2.4.5 SELECTION OF LEARNING ALGORITHM  
 

The purpose of the learning function/rule is to modify the variable connection 
weights on the inputs of each processing element (neuron) according to some 

neural based algorithm.  Many learning algorithms are in common use such as 
Hebb’s rule, Hopfield law, the delta rule, the gradient descent rule, Kohonen’s 
learning law and the Levenberg-Marquardt rule. The details of these learning 

algorithms can be found in (Karayiannis & Venetsanopoulos, 2013; Anthony & 
Bartlett, 2009; Yegnanarayana, 2009). A back-propagation algorithm, which is 

essentially a gradient-descent technique that minimizes the network error 
function (Rumelhart et al., 1986; Haykin & Lippmann, 1994). The gradient 
descent is the process of making changes to weights and biases, where the 

changes are proportional to the derivatives of network error with respect to those 
weights and biases. The Levenberg-Marquardt Algorithm (LMA) available in the 

neural network tool box of MATLAB (Beale et al., 2015) was selected as the 
training algorithm in this study because it is quicker and more reliable than any 
other back-propagation method (Jeong & Kim, 2005).  

 
Note: Selection of input vectors is covered in section 3.1 (later). 

 

2.5 DEVELOPMENT OF FLOW DURATION CURVES (FDC) 
 
In order to evaluate the ability of ANN models (i.e. validation of the developed 
models) to capture low, medium and high flow regimes of the observed 

hydrographs, FDC were prepared. For preparation of the FDC, the discharges 
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were sorted from largest to smallest and then ranks were assigned to each value 
of discharge. The rank one was assigned to the maximum discharge while the 

last rank was given to the minimum discharge in the record. The exceedance 
probability of all the discharges was then calculated by the following most 

common formula (Klingeman, 2005): 
 

𝑃 =
𝑀

𝑛+1
 × 100       (4) 

 

Where P is the exceedance probability, M is the rank, from highest to lowest and 
n is the total number of records under consideration. A graph was then prepared 

with exceedance probability versus discharge which is known as the flow duration 
curve. Further details on how to prepare FDC’s can be found in (Klingeman, 

2005). 
 

2.6 PERFORMANCE PARAMETERS 
 
The performance of the ANN model using different inputs was also evaluated in 

terms of statistical measurements (using the following three statistical 
measures). 
 

Correlation Coefficient (R2): The correlation coefficient is used in statistics in 
order to determine the strength of relationship between two variables (actual and 

predicted values). The formula to calculate the (R2) is given by the following 
equation: 
 

𝑅 =  
∑ (𝑋𝑖−𝑋̅)(𝑌𝑖−𝑌̅)𝑛

𝑖=1

√∑ (𝑋𝑖−𝑋̅)2𝑛
𝑖=1 √∑ (𝑌𝑖−𝑌̅)2𝑛

𝑖=1

     (5) 

 

Where Xi and Yi are actual and computed values respectively while 𝑋̅ and 𝑌̅ are 
the average values. The R2 is called as coefficient of determination and will be 

used in this study. This R2 value represents fraction of the variation in one 
variable that may be explained by the other variable. Its value varies between 

+1 to -1 with -1, 0 and +1 values showing negative relation, no relation and 
positive relation respectively between two variables. 
 

Root Mean Square Error (RMSE): The RMSE is a common measure of the 
difference between the values predicted by a model and the values actually 

observed. The RMSE values ranges between 0 and ∞ with 0 values showing the 

perfect match and ∞ value shows no match between predicted and observed 

values. The formula to calculate RMSE is given by the following equation: 
 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
(∑ (𝑋𝑖 − 𝑌𝑖)2𝑛

𝑖=1 )     (6) 

 

Where Xi and Yi are actual and computed discharges (m3/s), respectively, and n 
is the total number of observations. As RMSE is measure of error calculated 

between actual and computed discharges, so its unit will be m3/s in this study.  
 
Nash-Sutcliffe Efficiency (NSE): NSE criteria was also used (Nash & Sutcliffe, 

1970) in order to evaluate the performance of a developed model. The Nash-

Sutcliffe Efficiency range from -∞ to 1 with value 1 corresponds to a perfect 
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match between model and actual values. The NSE value equal to zero indicates 
that the model predictions are as accurate as the mean of the observed data, 

while an NSE value less than zero shows that the observed value mean is a 
better predictor than the model values mean.  The closer the model efficiency is 

to 1, the more accurate the model is. The formula to calculate the NSE is given 
by the following equation: 
 

𝑁𝑆𝐸 = 1 −
∑ (𝑋𝑖−𝑌𝑖)2𝑛

𝑖=1

∑ (𝑋𝑖−𝑌𝑖)2𝑛
𝑖=1

      (8) 

 

Where Xi and Yi are actual and computed values respectively while and 𝑌𝑖̅ are the 

mean of the computed values by the model. 
 

3 RESULTS AND DISCUSSION 
 

This study was aimed to develop a neural network model to forecast the runoff 
using antecedent rainfall and or runoff data.  
 

3.1 SELECTION OF INPUT VECTOR 
 

The performance of rainfall-runoff data driven models including FFNN type of 
ANN is very much dependent on the selection of appropriate input vector. Two 

common approaches for input selection of data driven models were found in 
literature (Talei et al., 2010). These two common approaches are sequential and 
pruned time series approaches. 

 
3.1.1 APPROACH 1 - SEQUENTIAL TIME SERIES 

 
The first approach was the selection of input vector comprising sequential time 
series data, which starts from containing only 1-day lagged time series data in 

the input vector, then modifying the external input vector by successively adding 
one more lagged time series into input vector and this continues up to a specific 

lag time. This approach has been applied in many studies (Furundzic, 1998; 
Tokar & Markus, 2000; Riad et al., 2004; Chua et al., 2008; Moosavi et al., 
2013). This specific lag time can be determined either by trial and error or may 

be selected from present time to the time where the lagged/antecedent rainfall is 
most correlated with the observed discharge/runoff. This also depends on the 

time of concentration of the watershed, as Talei et al. (2010) denoted this 
approach as the sequential time series approach, and the same notation was 
used in this study. Ten input vectors i.e. I1, I2, …. I9 and I10 are presented below 

to show an example of the input vector selection (also stated above in this 
section): 

 
I1 = r(t) 
I2 = r(t), r(t-1)  

I3 = r (t),r(t-1), r(t-2)  
….. 

I10 = r(t), r(t-1), r(t-2), r (t-3), r(t-4), r (t-5), r(t-6), r (t-7), r(t-8), r (t-9) 
 
The first input vector contains only one day of antecedent rainfall data in the 

input vector, the second vector contains lagged 1 and lagged 2-day rainfall, the 
third input vector contains lagged 1, lagged 2 and lagged 3-day rainfall and so on 
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to forecast the runoff.  The first input vector I1 contains only one variable which 
is the lagged 1-day rainfall data. The input vector I2 contains two variables of 

lagged 1 and lagged 2-day rainfall data and so on. 
 

3.1.2 APPROACH 2 - PRUNED TIME SERIES 
 
The second approach was the selection of variables of the input vector around 

the most correlated lagged time series data. This approach was represented as 
pruned time series approach in this study as suggested by Talei et al. (2010. This 

approach has also been successfully applied in many studies (for example, Nayak 
et al., 2005a, 2005b, 2007). In order to identify appropriate inputs for the neural 
network with this second approach, a cross-correlation was conducted between 

the observed rainfall and runoff. Cross-correlation indicates the statistical 
dependence of two variables, as it is a measure of relationship between two 

variables data sets. The calculated value of the correlation coefficient explains 
the exactness between the predicted and actual values. Its value always lies 
between -1 to +1. If the value of the correlation coefficient is positive, it 

indicates a similar and identical relation between the two values.  
 

Whereas negative values indicate the dissimilarity between the two values. 
However, it was clear from cross-correlation analysis that the lagged three-day 

rainfall had a maximum correlation value of 0.279 with the observed runoff while 
the lagged two-day rainfall has a correlation of about 0.275. Likewise, lagged 
five, six and seven days’ correlation values were placed at third, fourth and fifth 

places, respectively. Based on the cross-correlation analysis results (not shown 
here), the following eight input vectors were established by including only the 

lagged rainfall data series which only have high correlation values: 
I1 = r(t-3) 
I2 = r(t-4) 

I3 = r(t-5)  
I4 = r (t-6)  

I5 = r (t-3), r(t-4)  
I6 = r (t-3), r(t-4), r (t-5) 
I7 = r(t-2), r (t-3), r(t-4), r (t-5)  

I8 = r(t-2), r (t-3), r(t-4), r (t-5), r(t-6) 
 

With the pruned time series approach, the input vectors I1, I2 and I3 contain only 
the three, four and five days lagged rainfall data series, respectively. These are 
the lagged data series which were found to have maximum correlation coefficient 

value with the observed runoff at the current time. Likewise, I5, I6, I7 and I8 input 
vectors were formed by adding different lagged time rainfall data series 

containing the highest correlation coefficient values.  
 
3.1.3 APPROACH 3 - NON-SEQUENTIAL TIME SERIES 

 
Another method was preseneted by Sudheer et al. (2002) for the selection of the 

external input vector for ANN models on the basis of cross-correlation and auto-
correlation properties of the data series under consideration. This approach was 
denoted as the non-sequential time series approach in this study. Auto-

correlation is the cross-correlation of discharge with its lagged values. The 
results of the auto-correlation analysis of discharge showed that lagged one-day 

discharge has the maximum relation with the current discharge. The following 
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five input vectors were formed based on the cross-correlation and auto-
correlation analysis results (i.e. by including the data series which have high 

values only): 
I1 = r(t-3), Q(t-1) 

I2 = r(t-3), r (t-4), Q(t-1) 
I3 = r(t-3), Q(t-1), Q(t-2) 
I4 = r(t-3), r (t-4), Q(t-1), Q(t-2) 

I5 = r(t-3), r (t-4), r (t-5), Q(t-1), Q(t-2) 
 

The input vector one I1 contains the rainfall and runoff data series which have 
high values of cross & auto correlations, respectively. Similarly, input vector I2 
contains two rainfall data series having high correlation values and one runoff 

data series. The input vectors I3, I4 and I5 were also formed using a similar 
method (as stated above in this current section). 

 

3.2 ANN MODEL DEVELOPMENT 
 
3.2.1 DATA DIVISION 
 

The ANN model was developed using average daily rainfall and flow data. First, 
all data was divided into three parts: training, validation and testing. Different 

studies used different percentages for data division into training, validation and 
testing. The most common data division that was used by others (Moosavi et al., 
2013; Lohani et al., 2012; Chang and Hong, 2012) was 70% (for training 

purposes) and 15% each for validation and testing. Therefore, the default setting 
of the ANN tool box of 70% was used for training and 15% was used for 

validation and testing (each) in this study. The Matlab function divide-block was 
used for this purpose of data division. 
 

3.2.2 APPROACH 1 - SEQUENTIAL TIME SERIES RESULTS 
 

The results of the best developed models using approach 1, 2, and 3 (i.e. 
sequential, pruned, and non-sequential time series approaches, respectively) are 

presented in Table 1.  The R2 (%), RMSE (m3/s), and NSE (%) values for the 
input vector 1 (I1) and input vector 10 (I10) during training, validation, and 
testing are also given in Table 1. It is clear from Table 1 that a minimum value of 

R2 i.e. 5% was obtained with I1 as compared to I10 (which contained the lagged 
rainfall data from 1 to 10 days) that yields a maximum value of 36% for both R2 

and NSE. The RMSE value reduced from 195 (for I1) to 161 (m3/s) for I10. The 
RMSE values corresponds to the error between the actual and computed 
discharges. It was obvious from the data that I10 has the minimum RMSE values 

among the ten input vectors tested for the sequential time series approach. On 
the basis of all these three figures, it was revealed that as more and more lagged 

rainfall data was added to the input vector, the accuracy of the models continued 
to increasing in terms of higher values of R2 (%) and NSE (%) and lower values 
of RMSE. The ANN model with I10 was considered to be the best model with the 

sequential time series approach.  
 

Furthermore, the observed and the predicted hydrographs for the least 
performing model I1 and best model I10 with approach one (sequential time 
series approach) are presented in Figure 2.  It is apparent from Figure 2 that the 

predicted discharge with I1 was only able to track the average flows of the 
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observed hydrographs. It was unable to trail the high and low flow trails of the 
observed hydrographs. Whereas, Figure 3 showed the observed and predicted 

hydrographs for I10. It can be seen from Figure 3 that the predicted hydrograph 
was able to capture low and high flows features of the observed hydrograph 

better than I1. 
 

 
 

Figure 2. The performance of the ANN model (i.e. observed vs predicted flow 
rates) for I1 with sequential time series approach. 

 

 
Figure 3. The performance of ANN model (i.e. observed vs predicted) for I10 with 

sequential time series approach. 
 

3.2.3 APPROACH 2 - PRUNED TIME SERIES RESULTS 
 

The ANN models using eight input vectors selected on the basis of correlation 
analysis were developed using a similar procedure stated above in section 3.1. 
The results of the developed models in terms of performance parameters of R2 

(%), NSE (%), and RMSE are presented in Table 1. It is apparent from Table 1 
that input vector (I1) which contains lagged three-day rainfall data series as 

input and present day discharge as output yields the R2
 and NSE values ranging 

between 8 and 11% (for the three parts i.e. training, validation, and testing). 
The RMSE values ranged between 194 and 215 m3/s was found for the I1 (for the 

three parts). However, results showed that for the I8 i.e. input vector 8, the R2 
and NSE values were increased ranging between 20 and 29% (for the training, 

validation and testing of ANN models), and RMSE decreased to 169 m3/s (Table 
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1), as the number of lagged rainfall data series was added in the input vector. 
The best performance was found with I8 containing lagged two, three, four, five 

and six days’ rainfall data series in the input vector.  

 
Figure 4: The performance of ANN model (i.e. observed vs predicted daily flow 

rates) for I1 with pruned time series approach. 
 
In other words, R2 and NSE (%) values during training, validation and testing 

phases were increased from I1 to I8. The RMSE was found to be smaller with I8 as 
compared with I1 during the training, validation and testing phases (refer to 

Table 1). Similar to sequential time series approach, the hydrographs of the 
observed and predicted discharges for the least performing model with I1

 and the 
best performing model with I8

 are presented in Figures 4 & 5. The performances 

of the predicted discharges of the ANN model developed with I8 was found to be 
better as compared to I1. The predicted hydrograph by I1 was not able to track 

the low and high flow trails of the observed hydrograph (Figure 4). 

 
Figure 5:  The performance of ANN model (i.e. observed vs predicted daily flows) 

for I8 with pruned time series approach. 

 
3.2.4 APPROACH 3 - NON-SEQUENTIAL TIME SERIES RESULTS 

 
The values of performance parameters of R2, NSE, and RMSE for all five input 

vectors during training, validation and testing (using input vectors identified on 
the basis of the non-sequential time series approach) are presented in Table 1.  
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Figure 6: The performance of the ANN model for I1 with non-sequential 

approach. 

 

 
Figure 7: The performance of the ANN model developed using I5 with non-

sequential approach. 
 
The ANN models developed using input vectors identified on the basis of cross 

and auto correlations analysis was found to produce significantly better results 
with all five input vectors relative to input vectors tested with the sequential and 

pruned time series approaches. The performance of the ANN models (in terms of 
R2 & NSE values) was improved slightly (refer to Table 1) from I1 to I2 and then 
to I3 and thereafter it remained almost constant. It can be seen from Table 1 

that the input vector I5 performed better (highest values of R2, NSE and lowest 
values of RMSE) than I1. It can be seen from Figures 6 & 7 that predicted 

discharges yielded by the ANN models developed using I1 and I5 were able to 
successfully capture the lower, medium and high flow features of the observed 
hydrographs.  

 
3.2.5 PERFORMANCE COMPARISON FOR ANN MODELS 

 
In summary, it is evident from Table 1 that overall the ANN models developed 
using the input vectors identified in the non-sequential time series approach 

outperformed as compared to the ANN models developed with the sequential and 
pruned time series approaches. The ANN model with the non-sequential time 

series approach yielded the average R2 and NSE value of about 96% as 
compared to average value of 25% and 35% with the pruned and sequential 
time series approaches, respectively (for both R2 and NSE). Similarly, the error in 

terms of RMSE (for testing phase) was found 37 m3/s for the non-sequential time 

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000

D
is

ch
ar

ge
 (

m
3 /

s)
 

Time (days) 

Observed (X) Predicted (Y)

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000

D
is

ch
ar

ge
 (

m
3 /

s)
 

Time (days) 

Observed (X) Predicted (Y)



15 

 

series approach as compared to 180 and 162 m3/s for the pruned and sequential 
time series approaches (Table 1). 

 
Table 1: Performance parameters (i.e. R2, RMSE and NSE) of ANN models (with 

different input vectors) for three approaches (i.e. sequential, pruned, and non-
sequential time series, respectively). 

 

 

 Training Validation Testing 

Approach Input R2 RMSE NSE R2 RMSE NSE R2 RMSE NSE 

  Vectors (%) (m3/s) (%) (%) (m3/s) (%) (%) (m3/s) (%) 

1 I1 5 195 5 10 220 8 6 195 5 

  I10 36 161 36 39 179 39 35 162 35 

2 I1 11 197 9 10 215 7 8 194 8 

  I8 29 169 29 27 199 26 22 180 20 

3 I1 97 35 97 97 38 97 95 43 95 

  I2 97 35 97 97 37 97 97 37 97 

  I3 98 31 98 98 32 98 95 43 95 

  I4 98 31 98 98 32 98 97 36 97 

  I5 98 31 98 98 32 98 97 37 97 

 
 

 
 

3.3 FLOW DURATION CURVES COMPARISON 
 

Finally, FDC’s for the best models with all three approaches were prepared and 
are presented in Figure 8. The FDC demonstrated the percentage of time a given 

flow was equalled or exceeded during a specified period of time. The 10 
percentile flow can be considered as a high flow percentile in the FDC. The 10 
percentile of the flow represents the flow that was equalled or exceeded by 10 

per cent of the period of record under consideration. Likewise, 11 to 89 
percentile flow was considered as medium flow percentile while 90 percentile 

flows was considered as low flow percentile.  
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Figure 8: Observed and predicted flow duration curves for three approaches (i.e. 
sequential, pruned and non-sequence time series). 

      
It can be seen from Figure 8 that the predicted discharges of the ANN models 

developed with sequential time series approach (Qseq.) and pruned time series 
approach (Qprun.) were found below the observed discharge for high flows and 
medium high flows ranges (i.e. under estimating the flows) of the FDCs.  

 
However, the predicted discharge of the ANN models with sequential time series 

approach (Qseq.) and pruned time series approach (Qprun.)
 were over estimating for 

medium-low and low flow trails of the observed hydrographs as these curves 
were found above the observed discharge curves.  

 
Furthermore, the FDC yielded by the ANN model developed with non-sequential 

time series approach (Qnon-seq.) well captured all flows i.e. the high, medium and 
low flow features of the observe discharges and thus can be considered as the 
best model. 

 

4 SUMMARY AND CONCLUSIONS 
 
As stated by Amirhossein et al. (2015) that “….. artificial neural network is 

probably the most successful learning machine technique with flexible 
mathematical structure which is capable of identifying complex non-linear 

relationships between input and output data without attempting to reach the 
understanding of the nature of the phenomena. Statistical approach depending 

on cross-, auto- and partial-autocorrelation of the observed data is used as a 
good alternative to the trial and error method in identifying model inputs……”. 
 

The study was conducted to demonstrate the ability of the ANN model for 
forecasting runoff using antecedent rainfall-runoff data for the Waikato River 

catchment. Thus, the following conclusions can be drawn from this study: 
 
1. The ANN models developed using three approaches (i.e. sequential, pruned 

and non-sequential time series) were able to predict runoff generated from the 
Waikato River catchment using antecedent rainfall and runoff data. 

2. It is clear from the results that the ANN model developed with I10 in sequential 
time series approach yielded the best results among the ten input vectors 
tested. Likewise, I8 and I5 produced the best results with the pruned time 

series approach and the non-sequential time series approach, respectively. 
3. However, the performance of ANN models was found very sensitive to the 

selection of appropriate input vector(s). As the input vector values increases 
the model performance increases. 

4. This study showed that the input vectors selected (approach 3 i.e. non-

sequential time series) on the basis of cross correlation (i.e. statistical 
dependence of two variables such as rainfall and runoff in this case) and auto 

correlation (i.e. cross relation of discharge with its lagged values) yielded the 
best results.  

5. The ANN model developed using approach 3 performed well, and gave, on 

average, 96% value for both R2 & NSE during the validation and testing 
phases of modelling exercise. 
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