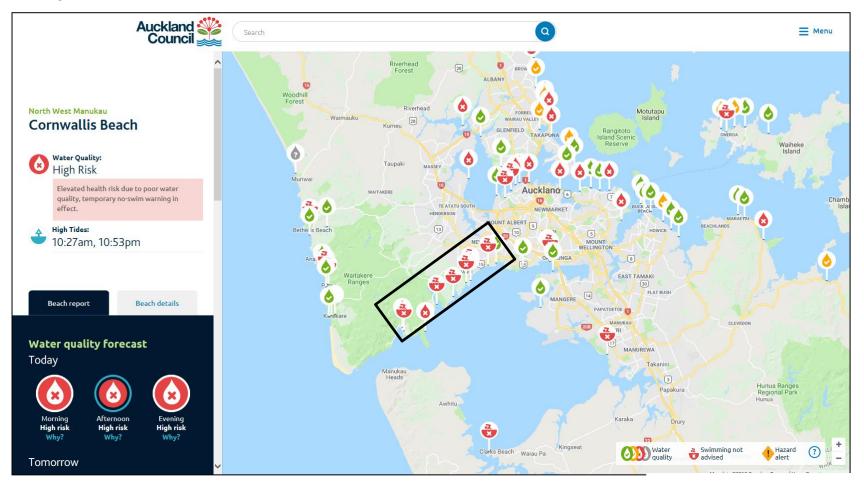
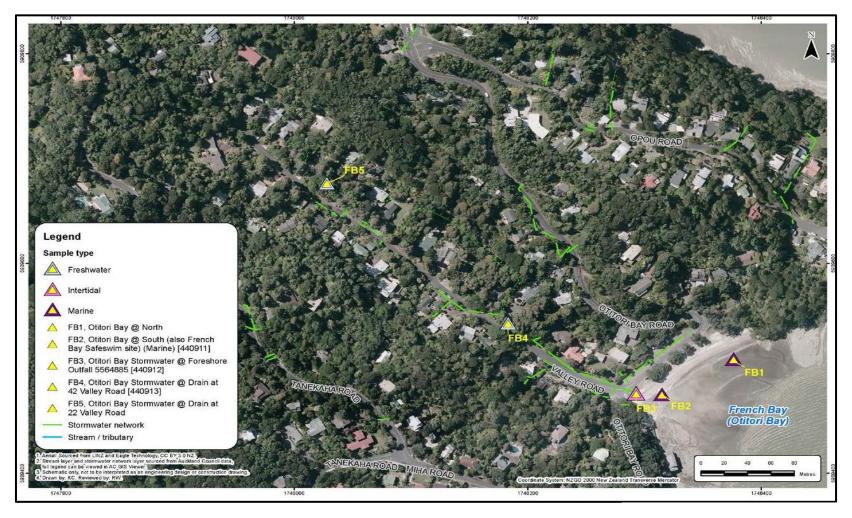
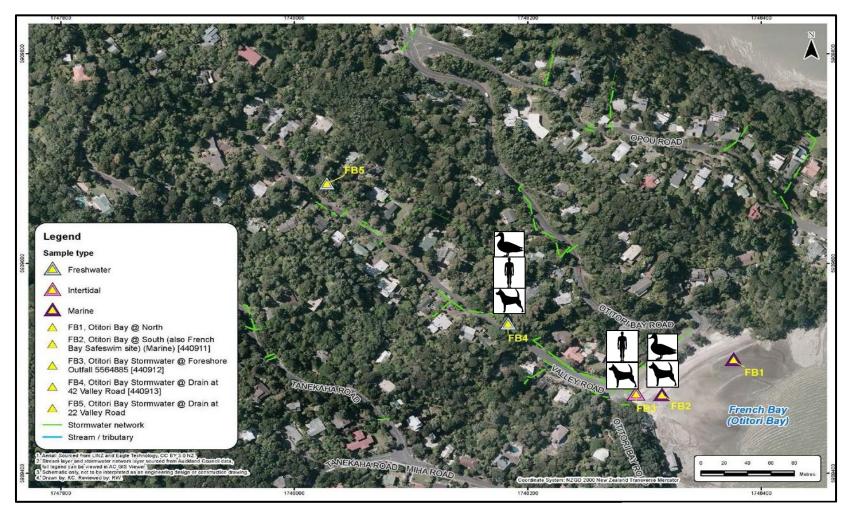
Improving Bathing Water Quality: Auckland Case Studies

Timothy Hopley, Healthy Waters Specialists, Auckland Council. Presented by Tom Porter.

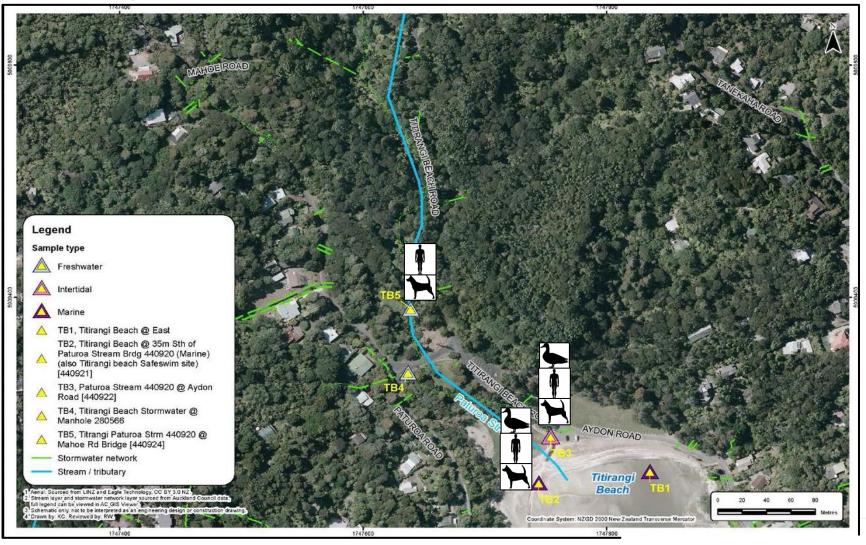




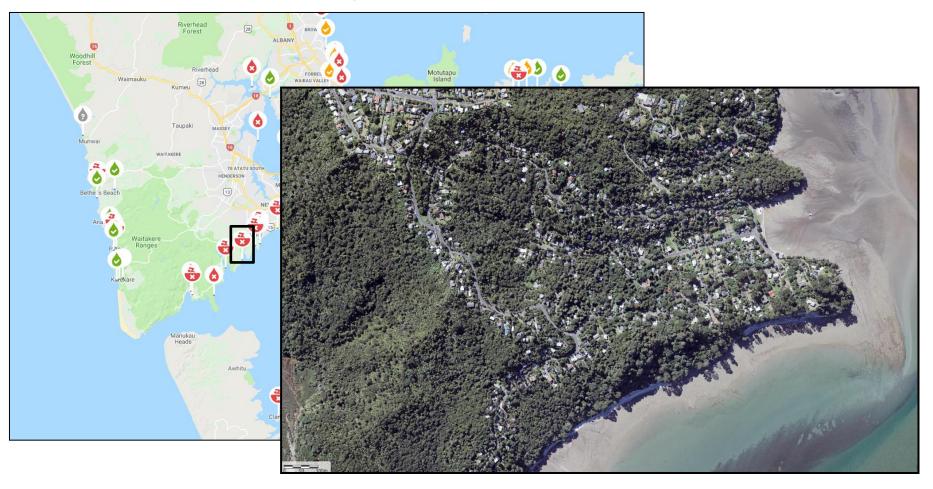
- Sites with Microbiological Assessment Category grades (MAC grades) of "D" have long term signage in place warning people of the potential health risks associated with swimming at the particular beach.
- Real time monitoring has stopped at these beaches. Until mitigation / fixes are implemented to improve the quality of the beach.
- Increased pressure from communities to improve water quality with the hopes of re-opening the beach.

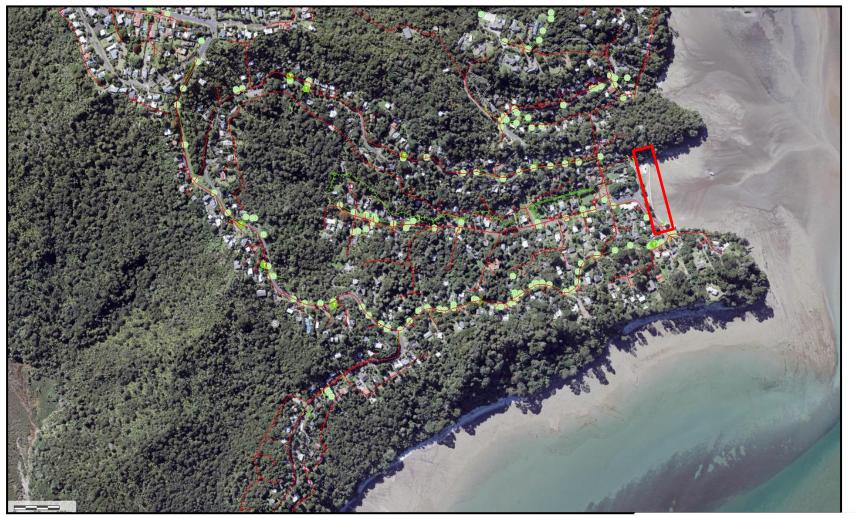

Case study: Northern Manukau Beaches

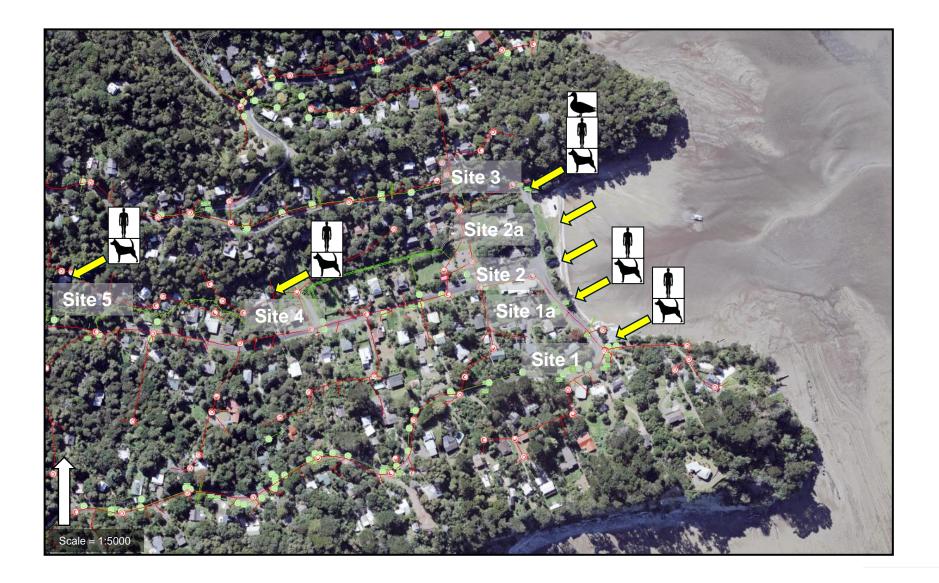
French Bay


French Bay

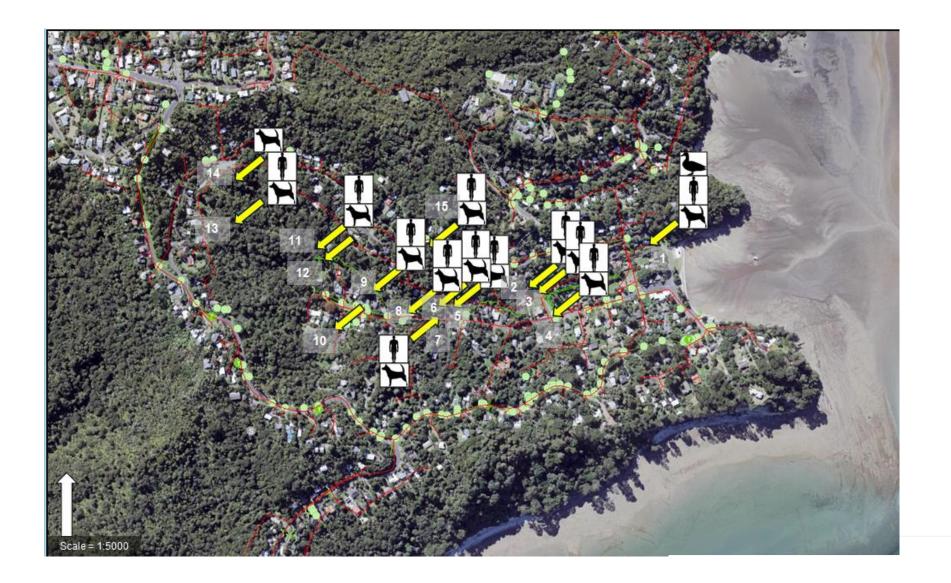
Titirangi Beach


Titirangi Beach


In Summary


- Dog, human and avian faecal contamination at all sites to some extent
- Nine Beaches within the Northern Manukau area have long-term signage in place.
 These include catchments with reticulated and onsite wastewater systems
- Catchments size varies as does the number of dwellings per catchments.
- Different stages of investigation at different beaches
- Not one catchment / beach is the same

Case study: Laingholm Beach



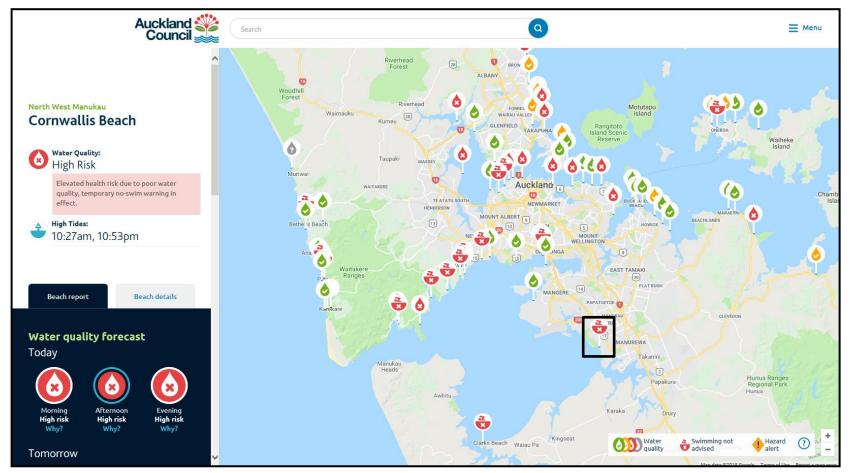
		3 Faecal source	E. coli	Enterococci	General	Quandhusian
	Site	Date	(MPN/100mL)	(MPN/100mL)	GenBac	Conclusion
	Stormw	ater pipe				
	Site 1	14/04/2014	2500	NA	VSP	Human (BiADO BacH) & dog
Site 3	Marine	sites				
	Site 1a	14/04/2014	NA	4100	Р	Unidentified
	Site 2	14/04/2014	NA	7700	Р	Unidentified
Site 2a	Site 2a	14/04/2014	NA	1200	VWP	Unidentified
	Site 3 (s	stream)				
Site 2	Site 3	6/03/2014	3600	NA	VSP	Human (BiADO dog & avian
Site 1a	Site 3	14/03/2014	10500	NA	VSP	Dog & avian
	Site 3	4/04/2014	1700	460	VSP	Human (BiADO dog & avian
Site 1	Site 3	14/04/2014	16000	>24200	VSP	Human (BiADO BacH), dog & avian
	Site 4 (s	stream)				
	Site 4	6/03/2014	8600	NA	SP	Unidentified
	Site 4	14/03/2014	1700	NA	VSP	Human (<u>BacH</u>)
	Site 4	4/04/2014	2700	NA	VSP	Human (BiADO BacH)
	Site 4	14/04/2014	12000	NA	VSP	Human (<u>BiADO</u> BacH) & dog
	Site 5 (s	stream)				
	Site 5	6/03/2014	8700	NA	SP	Unidentified
	Site 5	14/03/2014	1300	NA	SP	Unidentified
	Site 5	4/04/2014	990	NA	VSP	Human (BiADC
	Site 5	14/04/2014	7700	NA	VSP	Human (BiAD(BacH) & dog

NB: no source tracking analysis was undertaken on Day 3. Refer to section 2.4.1 for detail about interpretation of results.

								Survey	1 (13/09	/2016)		Survey 2 (3/07/2017)	
					Site	GenBac	Hum Bac	ian H	Human BiADO	Human source detected	GenBac per 100 mL	Human BacH per 100 mL	Human BiADO per 100 mL	Human source detecte
The Car	1	C. La			L1	VSP	posit	ive p	present	Yes	510,000	440	580	Yes
				• · · · · ·	L2	VSP	NE	>	ND	-	180,000	230	150	Yes
		A8-91	23.3		L3	VSP	NE	>	ND	•	240,000	530	<130	POSS
		13			L4	NA	NA	<u>م</u>	NA	NA	450,000	690	360	Yes
Table 3	· MST reeu	ulte for no	n human	Laingholm catchm	ant water	auglity es	molee				170,000	210	<130	PROB
Site	. Morresu			13/09/2016)	ent water	ent water quality samples. Survey 2 (3/07/2017)						160	<130	PROB
ono	GenBac	Dog BacH	Avian GFD	Non-human source detected		Jui	Survey 2 (· ·	New burners	78,000	180	<130	PROB
					GenBac/1 mL	00 Dog	Dog BacH	Avian GFD	n	Non-human source detected	77,000	120	<130	POSS
									<u> </u>		84,000	<100	150	PROE
L1	VSP	positive	present	AVIAN, POSS Dog	510,000	1.	200	<90)	DOG	35,000	<100 <100	<130 <130	-
L2	VSP	ND	ND	-	180,000	5	30	<90)	DOG	80,000	150	<130	POSS
L3	VSP	ND	ND	Avian PRESENT	240,000	. <	98	<90)	BacH ¹	95,000	<100	<130	
L4	NA	NA	NA	NA	450,000	1.	300	<90)	DOG	240,000	590	1,500	Yes
L5	NA	NA	NA	NA	170,000	5	70	<90)	DOG	800,000	<100	320	PROB
L6	NA	NA	NA	NA	110,000 3		10	<90 DOG		ong positive; SP – strong positive; P – positive; ND – not sent.				
L7	NA	NA	NA	NA	78,000	78,000 340		<90)	DOG	and and the			
L8	SP	ND	ND	-	77,000	1	80	<90) D	OG, BacH ¹	2.2.2			
L9	VSP	ND	ND	-	84,000	3	40	<90)	DOG				
L10	VSP	ND	ND	POSS Avian	35,000	<	98	<90		-				
L11	VSP	ND	ND	-	34,000	<	98	<90		-				
L12	NA	NA	NA	NA	80,000	1	50	<90) D	OG, BacH ¹				
L13	Р	ND	ND	-	95,000	2	90	<90)	DOG				
L14	NA	NA	NA	NA	240,000	1,	400	<90)	DOG				
L15	NA	NA	NA	NA	800,000	3,	000	<90		DOG				

Conclusions for Laigholm Beach

• From 15 dry weather samples 5 exceeded MoH guidelines for *E.coli*.


- All 15 samples during wet weather exceeded MoH guidelines for *E.coli*.
- During dry weather human markers were picked up at the bottom of the stream only.
 Dog and avian markers were also present
- During wet weather human and dog markers were picked up at 12 of the 15 sites, with no avian markers found
- Wet weather is a larger contributor then dry weather of elevated levels of *E.coli* to the marine environment
- Human and dog faecal contribution are the main concern


Next steps for Laigholm Beach

- Investigate stormwater network during wet weather and dry weather
- Once sampling is complete look at hot spots and investigate further to property boundaries

Case study: Weymouth



Figure 2-1 Location of 6 sampling sites visited during this investigation in 2014 (red dots). Stormwater lines and manholes are shown by green lines and green and white dots, respectively. Wastewater lines and manholes are shown with red lines and red and white does, respectively.

Results

- Stormwater outfall onto Weymouth Beach was main source of human faecal contamination.
- Birds and dogs contributed to a lesser extent.
- Investigation into wastewater and stormwater infrastructure resulted in 44 issues being identified – all of which were remedied.
- Post remediation monitoring found human faecal contamination removed (almost completely).
- However was replaced with high avian faecal contamination (in the 10,000's).

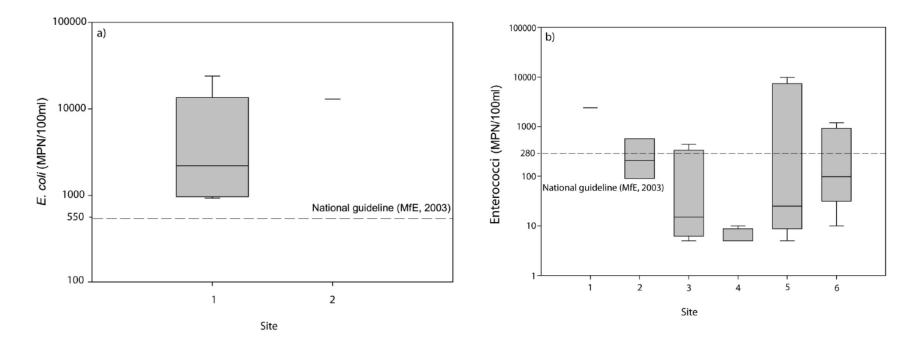
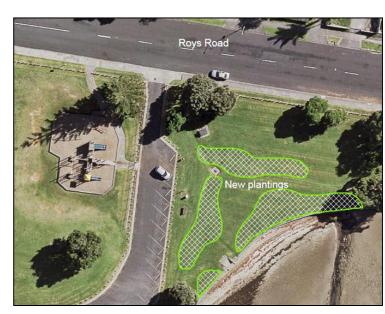


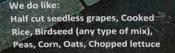
Figure 3-2 Boxplot showing the distribution of **a**) *E. coli* data for each of the freshwater samples and **b**) Enterococci data for each of the saline samples from Apr 2014. Boxes represent the interquartile range, the midline represents the median value and the upper and lower error bars represent the highest and lowest values, respectively. A single freshwater sample was collected at Site 2 (**a**) and a single saline sample w

2015 pre-remediation

Date	Site	Tide	Salinity (ppt)	Enterococci (MPN/100ml)	<i>E. coli</i> (MPN/100ml)	General marker result (GenBac)	Faecal sources
8 Apr	1	High	0	1,800	2,200	Very strong positive	Human (BiADO and BacH)
8 Apr	1	Low	0	2,900	1,000	Very strong positive	Weak human (BacH)
13 Apr	1	High	0	3,700	<u>3,100</u>	Strong positive	Not Detected
13 Apr	2	High	32.4	<u>570</u>	3,800	Strong positive	Bird
16 Apr	1	High	26.8	2,400	2,600	Very strong positive	Human (BiADO and BacH), bird
16 Apr	1	Low	0.2	2,200	<u>930</u>	Strong positive	Not Detected
17 Apr	1	High	0	24,000	24,000	Very strong positive	Human (BiADO and BacH), dog
17 Apr	2	High	2.4	24,000	13,000	Very strong positive	Human (BiADO), dog
17 Apr	3	High	32.5	440	310	Very weak positive	Not Detected
17 Apr	5	High	28.1	9,800	3,000	Positive	Not Detected
17 Apr	6	High	32.1	1,200	780	Weak positive	Not Detected


2016/2017 Post-remediation

Date	Site	Enterococci (MPN/100mL)	<i>E coli</i> (MPN/100mL)	General marker result	Weather
4/01/2017	6	160	770	Avian	Wet
9/03/2017	6	3600	2400	Avian + Human	Wet
30/11/2016	6	1100	3000	Not identified	Dry
14/12/2016	6	20,000	24,000	Avian	Dry
1/02/2017	6	140	20,000	Avian	Dry
20/12/2016	1	24,000	9800	Avian	Wet
4/01/2017	1	230	800	Avian	Wet
15/02/2017	1	640	6500	Avian	Wet
9/03/2017	1	5800	3600	Avian + Human	Wet
30/11/2016	1	260	1200	Not identified	Dry
14/12/2016	1	14,000	24,000	Avian	Dry
18/01/2017	1	2800	11,000	Avian	Dry
25/01/2017	1	1300	5800	Avian	Dry
1/02/2017	1	2200	24,000	Avian	Dry
8/02/2017	1	1000	8700	Avian	Dry


Mitigation

- Installing signs asking people not to feed the ducks
- Strategic planting to help with filtering runoff and stop ducks from congregating
- Post monitoring will occur after the planting is completed

Case study conclusions

- Microbial Source Tracking remains a highly efficient tool for highlighting areas of faecal contamination when used in conjunction with *E.coli* or enterococci sampling
- Replication of MST analysis at each site is imperative to ensure positive marker identification
- Sampling on both dry and during or immediately after rain events have shown to be important method in understanding what is happening within the catchment
- Stream walks have been beneficial for investigation potential sources of contamination upstream of an outfall
- Up to date GIS layers with all known outfalls identified make identifying illegal and suspicious outfalls easier.

Questions