Development of a Freshwater Management Tool to support integrated watershed planning for Auckland waterways

Long-Term Integrated Watershed Planning

- Auckland Council's Wai Ora Healthy Waterways Programme
- Auckland Unitary Plan (AUP)
- National Policy Statement for Freshwater Management (NPS-FM)
- 10 watersheds in Auckland with Integrated Watershed plans being developed
- Fresh Water Management Tool (FWMT)
- Collaboration with Morphum Environmental & Paradigm Environmental

The Freshwater Management Tool

Stage 1

Stage 2

Stage 3

 Describe the current state of water in Auckland's watersheds, including the water issues that need to be addressed

 Develop potential water and land management scenarios to address the issues identified in Stage 1

• Communicate the **action plan** for addressing the issues identified and explored in Stages 1 and 2

FWMT Process Overview

Program

Model Inputs

Data Synthesis

OTARA CREEK CATCHMENT

Legend		Project FR	Glient AUCKLAN	D COUNCIL	Project no. F	201663
•	Reporting node	2	1000	2000		
—	Digitised watercourse	0	1000	2000 m	Drav	m RF
	Sub-catchment boundary				1.	

Data: Successes, Challenges and Lessons

- Successes 0
 - Initial running of the LSPC model is demonstrating the quality of data
 - Great array of available datasets
 - VCSN
 - Lidar
 - Fantastic data library and resource for the Auckland catchments
- Challenges 0
 - Characterising rural land use
 - Alignment of different catchment boundaries
 - Processing time

 - Data gaps and deficiencies
 Data incongruencies varying use and control

Fair

Poor

Calibration Metrics	Relative	Recommended Error Criteria						
(07/01/2006 - 06/30/2017)	Mean Error	Very Good	Good	Fair	Poor			
Total Annual Volume	0.4%	≤ 5%	5 - 10%	10 - 15%	>15%			
Highest 10% of Flows	-0.2%	≤ 10%	10 - 15%	15 - 25%	>25%			
Lowest 50% of Flows	0.8%	≤ 10%	10 - 15%	15 - 25%	>25%			
Annual Storm Volume	6.3%	≤ 10%	10 - 15%	15 - 25%	>25%			
Summer Storm Volume	12.7%	≤ 15%	15 - 30%	30 - 50%	>50%			
Annual Baseflow Volume	-10.6%	≤ 10%	10 - 15%	15 - 25%	>25%			
Baseflow Recession	16.4%	≤ 3%	3 - 5%	5 - 10%	>10%			

Calibration Metrics		Rela	tive Mean Ei	Error					
(07/01/2006 - 06/30/2017)	Annual	Winter	Spring	Summer	Fall				
Seasonal Total Volume	0.4%	-9.1%	-1.3%	4.6%	5.3%				
Seasonal Storm Volume	6.3%	-5.1%	8.5%	12.7%	5.2%				
Seasonal Baseflow Volume	-10.6%	-19.1%	-22.2%	-6.7%	5.4%				
Seasonal Baseflow Recession	16.4%	18.9%	15.6%	13.3%	15.0%				
Nash-Sutcliffe Efficiency (E)*	0.81	0.80	0.82	0.85	0.76				
* E = 1 Perfect match of mod	eled to observe	d		<u>Performan</u>	ce Metrics				
0 < F < 1 Model predictions as	accurate as ob	served mean		Very Good	Good				

Observed mean better predictor than model E < 0

Initial results highlight the power of high-resolution model setup for reducing calibration burden (land uses,

•

•

subwatershed and weather).

- Will adjust baseflow/ groundwater
- parameters regionally

Top-Down Weight-of-Evidence Modelling Approach

Model Outputs

- The LSPC model for each watershed is being developed and calibrated instream with an emphasis on hourly or finer time series outputs for the following "primary" constituents:
 - Flow rate
 - Sediment (total suspended solids)
 - O Bacteria (E. coli and Enterrococci)
 - Metals (total zinc and copper)
 - Nutrients (total nitrogen and phosphorous))
- In addition, the LSPC model for each watershed will include outputs for additional "secondary" constituents:
 - Temperature
 - Nutrient species (nitrate, nitrite, organic nitrogen, ammonia, phosphate and organic phosphorous)
 - Dissolved oxygen, biochemical oxygen demand
 - Phytoplankton, chlorophyll-a

Sediment (at Source)

Sediment (Delivered to Mouth)

Average Annual Model Results: 10/1/1999 - 9/30/2015

Determination of yeild at source or after delivery

FWMT Process Overview

Example Interventions (Urban)

Source Control

- (1) Enhanced sweeping
 - Zinc roof reduction
 - Reduced brake pad emissions

(3) Parcel-scale Retention and

(4) Downstream Wetlands and Basins

Linear **Bioretention**

With: Opportunities and Cost **Functions**

(2)

Example Interventions (Rural)

(1) Source Control

- Reduced stock density
- Good farm practices
- Improve onsite WW systems

(2) Land Interventions

- Riparian buffers (1m, 5m, ...)
- Buffer strips

(2) Downstream Wetlands and Basins

Example Opportunity Screening (Max)

Street Retention Opportunity Screening

Infiltration Basin Opportunity Screening

Example Representation of Structural Interventions (SUSTAIN)

Unit Cost Functions

22.12		Formulas For Estimating Total Costs ¹					
BMP Category	BMP Types	Capital Costs	Annual O&M				
	Bioretention with Underdrain	Cost = 17.688 (A) + 2.165 (Vt) + 2.64 (Vm) + 3.3 (Vu)	Cost = 2.54 (A)				
	Bioretention without Underdrain	Cost = 9.438 (A) + 2.165 (Vt) + 2.64 (Vm)	Cost = 2.54 (A)				
LID and Green	Residential LID	Cost = 4.000 (A)					
Streets	Permeable Pavement with Underdrain	Cost = 33.594 (A) + 3.3 (Vu)	Cost = 1.74 (A)				
	Permeable Pavement without Underdrain	Cost = 25.344 (A)	Cost = 1.74 (A)				
	Pump	Cost = 56,227*(Pump Capacity _{cfs}) + \$1,207,736 ²					
Regional BMPs	Regional Project on Public Parcel	Cost = 10.01 (A) + 2.296 (Vt) + 2.8 (Vm)	Cost = 1.918 (A)				
	Regional Project on Private Parcel	Cost = 139.01 (A) + 2.296 (Vt) + 2.8 (Vm)	Cost = 1.918 (A)				

Typical Designs

Table 1-2. Existing, Planned, and Proposed Public LID design criteria

	Parameter	Value	Units
	Design Drainage Area		e 85 th percentile
Surface	BMP Footprint	volu	ume
	Ponding Depth	9	in.
	Depth	2	ft.
Soil	Media Porosity	0.35	n/a
	Media Infiltration Rate	2	in/br
	Use underdrain if underlying soils are less than	0.3	in/hr
Underdrain	Depth	1.5	ft.
	Media Porosity	0.4	n/a
	Subsoil Infiltration Rate	Match und	erlying soils

PA

Table 1-3. Regional BMPs on public parcels design criteria

	Parameter	Value	Units	Notes				
	Design Drainage Area	Specified explicitly for						
	BMP Footprint	each Regional BMP						
Surface	Ponding Depth	3	ft.	Assumed				
	Weir Length	25	% of width	Assumed to allow free overflow				

Table 1-4. LID on Private Residential Parcels design criteria

	Parameter	Value	Units		
	Design Drainage Area	Sized to capture 85th			
Surface	BMP Footprint	perce	entile volume		
	Ponding Depth	9	in.		
	Depth	2	ft.		
Soil	Media Porosity	0.35 n/a			
	Media Infiltration Rate	Match L	Inderlying soils		

Example Routing Network

Cost Effectiveness Curve

Cost (\$ Million)

1st: Use cost-optimization to identify solutions to achieve a wide range of contaminant load reductions for each watershed.

Interventions

TITLE	

$1233 \text{ m}^3 = 1 \text{ ac-ft}$

	COMPL TARG MEASU AN ENFORG	LIANCE BETS: IRABLE ND CEABLE		APPRO S (BM	EWMI ACH TO UBJECT IP capad	D ACHIE D ACHIE TO AE	EMENTA EVE COI DAPTIVE ressed i	ATION F MPLIAN E MANA n units o	PLAN: ICE TAF GEMEN of acre-fe	RGETS, IT eet)	
•	_	-ft)	Low-	Impact	Developi	ment	Streets	Reg	ional BN	/IPs	ity
Subwatershed ID	% Load Reduction Critical Condition	24-hour Volume to be Managed (acre	Ordinance	Planned LID	Public LID	Residential LID	Green Streets, All Components	Regional BMPs (Very High)	Regional BMPs (High)	Private Regional BMPs	Total BMP Capac (acre-ft)
640249	9%	1.66	1.03		1.36	1.80	0.00	0.00	0.00	0.00	4.2
640349	19%	0.94	0.18		0.90	0.01	0.36	0.00	0.00	0.00	1.4
640449	14%	0.15	0.15		0.38	0.03	0.00	0.00	0.00	0.00	0.6
640549	67%	26.30	1.14	0.04	0.14	3.14	9.63	13.75	0.00	0.00	27.8
640649	84%	13.22	0.31		0.54	0.33	3.98	0.00	0.00	6.44	11.6
640749	38%	2.70	0.50	0.00	2.07	0.48	2.98	0.00	0.00	0.00	6.0
640849	16%	1.94	0.48		0.81	1.22	0.35	0.00	1.00	0.00	3.9
640949	27%	0.80	0.08		0.36	0.02	0.22	0.00	0.00	0.00	0.7
641049	39%	1.81	0.12		0.07	0.20	0.06	0.00	0.00	0.00	0.5
641149	7%	0.09	0.05		0.18	0.09	0.35	0.00	0.00	0.00	0.7
641449	8%	0.00	0.00			0.00	0.00	0.00	0.00	0.00	0.0
641549	26%	0.52	0.09		0.41	0.30	0.05	0.20	0.00	0.00	1.0
641649	12%	0.00	0.00			0.01	0.00	0.00	0.00	0.00	0.0
642049	6%	0.00	0.00				0.00	0.00	0.00	0.00	0.0
Total	39%	50.1	4.1	0.0	7.2	7.6	18.0	14.0	1.0	6.4	58.4

Action Planning – Costs and Benefits

FWMT - Looking forward

- Adaptive management
- Program not a plan
- Supports an array of programs and policy decisions
- Adapt and improve strategies through new data
- Incorporate multiple benefits
- Incorporate lessons learned from implementation
- Track progress toward tangible goals

Questions and Discussion

Dr Coral Grant coral.grant@auckland.govt.nz

Caleb Clarke caleb.Clarke@morphum.com

Dustin Bambic dustin.bambic@paradigmh2o.com