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ABSTRACT  

Regulatory authorities in New Zealand have communication strategies as part of their 

monitoring programmes to ensure the public is informed of a health risk at a swimming 

site, for example through the release of swimming advisories when E.coli levels exceed 

single sample bathing water criterions. By the time the swimming advisories are released, 

however, they are typically at least a day or two late, due to the 24-48h turn-around 

time before results from culture-based microbiological analysis are available. Methods are 

thus needed that improve the timeliness and accuracy of recreational water quality risk 

assessments. An important strategy until reliable continuous monitoring is in place, is to 

combine existing monitoring programmes with predictive models. While predictive faecal 

indicator bacteria (FIB) models have been used to estimate bacteriological water quality 

at some swimming sites, these models are largely ‘top-down’ in their approach to 

safeguarding public health. Beyond being simply ‘advised when to avoid swimming’, there 

is an increasing awareness amongst the general public regarding the role they can play in 

water quality monitoring. This presents novel opportunities for citizen participation in 

predictive FIB monitoring and modeling. This study reports on the possibility of 

developing intuitive, public-friendly models that are based on the physical appearance of 

water (clarity) as a predictive variable in estimating the E.coli concentrations in rivers, 

and to assess if water is safe to swim in. The goal of this study was to evaluate the 

possibility of water clarity-based E.coli models for now-cast prediction, at local and 

national scales in New Zealand. 

Using an easily measured parameter (water clarity), this study calibrated and validated 

models that could be used by anyone, without the need for specialist technical 

knowledge. The models allow the user to assess whether or not it is safe to swim in their 

local waterways. At a national scale, the applicability of water clarity as a surrogate for 

E.coli concentration was also assessed using a total of 8103 E. coli datasets that have 

been routinely collected over the past two decades by regional authorities, for most New 

Zealand rivers and tributaries. Our results show that if swimmers were to avoid river 

waters with <1.1 m black disc visibility during autumn and summer or river waters with 

<0.5 during spring and winter, they would also avoid microbial hazards that are 

associated with exceedances of the 540 CFU/100 mL single sample bathing water 

standard. Regardless of the climatic season modelled, the clarity-based E.coli models 

performed well as they presented with sensitivity, specificity and accuracy values of at 

least 73%. The developed models offer the benefit of providing a faster method for 

estimating E. coli concentration, potentially engaging the public in water monitoring, and 

allowing them to make informed decisions on whether it is safe to swim at their favourite 

swimming spot. 
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1 INTRODUCTION  

Regulatory authorities in New Zealand have communication strategies as part of their 

monitoring programmes to ensure the public is informed of a health risk at a beach or 

river; for example, through the release of swimming advisories when E.coli levels exceed 

single sample bathing water criterions. By the time the swimming advisories are released, 

however, they are typically at least a day or two late, due to the 24-48h turn-around 

time before results from culture-based microbiological analysis are available (Dada and 

Hamilton, 2016). Methods are thus needed that improve the timeliness and accuracy of 

recreational water quality risk assessments. An important strategy until reliable 

continuous monitoring is in place, is to combine existing monitoring programmes with 

predictive models. 

Predictive FIB models provide a rapid estimation of the bacteriological condition, 

potentially assisting local beach managers in the decision process related to swimming 

advisories issuance. In recent years, many beach managers have increasingly adopted 

predictive tools, of which the most widely applied are models developed through multi-

variable linear regression (e.g., Olyphant, 2005; Nevers and Whitman, 2005, Feng et al 

2015). Process-based models, which couple hydrodynamic models with a microbe 

transport-fate model involving microbial loading, transport, and fate processes, have also 

been demonstrated to make predictions (e.g., Hipsey et al., 2008; Feng et al., 2015).  

While these predictive faecal indicator bacteria (FIB) models have been used to estimate 

bacteriological water-quality, they have largely adopted a ‘top-down’ in their approach to 

safeguarding public health (i.e. models are by science staff of regulatory bodies who 

simply advise the public when its safe or not to swim). Beyond being simply ‘advised 

when to avoid swimming’, there is an increasing awareness amongst the general public 

regarding the role they can play in water quality monitoring. This presents novel 

opportunities for citizen participation in predictive FIB modeling. This study presents a 

classic example of developing intuitive, ‘public friendly’ and ‘public-usable’ models, using 

the physical appearance of water (as measured by water clarity) as a way of estimating 

E.coli concentrations in surface water, to assess if water is safe to swim in. The goal of 

this study was to evaluate the possibility of using clarity models for E.coli nowcast 

prediction, at both a local and national scale throughout New Zealand. This will constitute 

a milestone in efforts geared towards developing and deploying site-specific river clarity 

based E.coli models at local scales for nowcast prediction of E.coli concentrations at 

popular recreational sites in New Zealand. 

2 METHODS 

2.1 STUDY SITES  

A total of 145,040 water quality datasets which has been routinely collected by regional 

authorities from as early as the late 1980s for most New Zealand rivers and tributaries 

(https://data.mfe.govt.nz/), was used in the analysis. This dataset contained measured 

values for several parameters including ammoniacal nitrogen, total nitrogen, nitrate-

nitrogen, dissolved reactive phosphorus, total phosphorus, and E.coli. All E.coli datasets 



were extracted (n=8170). Among these, a total of 8103 E. coli datasets which had 

corresponding discharge data were subsequently used for the analysis. E.coli data used 

thus spanned the period 2005 to 2013 at a total of 77 freshwater swimming sites 

representing 49 rivers and tributaries throughout New Zealand (Figure 1).  

 

Figure 1: 77 New Zealand freshwater swimming sites (49 rivers and tributaries) in the 

E.coli predictive modeling using water clarity as a predictor variable. 

 

2.2 DATA MANAGEMENT, STATISTICAL ANALYSIS, AND MODELING  

To fit the 8103 E.coli datasets based on their clarity, a gradient approach was used in 

which incremental ‘trigger’ values or water clarity ‘thresholds’ were applied. Incremental 

‘trigger’ values or water clarity ‘thresholds’ (i.e. from lowest to highest) were applied as 

‘thresholds’ to predict exceedances and non-exceedances of the national bathing water 

standard. These triggers or thresholds are water clarity values that would warrant 

additional site-based investigation, as they are indicative of conditions of elevated faecal 

indicator bacteria levels higher than the national bathing water standard of 540 

CFU/100mL.   



2.3 MODEL PERFORMANCE AND SWIMMING ADVISORY ASSESSMENT 

Exceedances of bathing water thresholds applied in this study were compared against 

national guidelines. An exceedance (or a positive model outcome) was recorded when 

sampled or predicted E. coli levels exceeded the single sample bathing water standard 

(BWS) of 540 CFU/100 mL (as stipulated in the New Zealand National Policy Statement 

for Freshwater Management) (NPS, 2014). A type I error (or a false positive outcome) 

was identified when the modeled E. coli level was above the thresholds, but the observed 

E. coli level was below the thresholds. When the modeled and observed E. coli levels 

were both above the thresholds, this was considered a true positive. On the other hand, 

a false negative result (type II error) was inferred when the modeled E. coli level was 

less than the thresholds but the observed E. coli level was higher. In such a case, 

potential microbial contamination would be undetected by the model and no swimming 

advisory would be issued. When the modeled and observed E. coli levels are both below 

the thresholds, this is identified as a true negative. Model accuracy is the percentage of 

correct advisory predictions. Sensitivity and specificity are defined as the rates of 

correctly predicted exceedances and non-exceedances, respectively. Specificity, 

sensitivity, and accuracy of the model were determined using the following equations: 

 

 

 

Receiver operating characteristic (ROC) curves, i.e. super-imposed plots of sensitivity, 

specificity and accuracy were used to determine the crossover  (i.e. optimum trigger 

water clarity) values. This crossover value is the optimum decision threshold where the 

maximum number of exceedances are correctly identified and is a reasonable trade-off 

between sensitivity, specificity, and accuracy (Arad, Housh, Perelman, & Ostfeld, 2013). 

3 RESULTS AND DISCUSSION 

A correlational analysis of 8103 nation-wide E.coli and clarity datasets indicate that river 

E.coli concentrations was inversely proportional to river water clarity, with a simply fitted 

spline accounting for more than 60% of the variability in the national E.coli dataset 

(Figure 2).  

Incremental water clarity values (i.e. from lowest to highest) were applied as ‘thresholds’ 

to predict exceedances and non-exceedances of the national bathing water standard. 

Based on this approach, Table 1 summarizes the model performance data obtained for 

different scenarios of climatic season. With increasing water clarity ‘trigger value’, 

sensitivity of the model increases, i.e. increase in the proportion of correctly predicted 

true exceedances but a concomitant reduction in the specificity of the model, i.e. 

decreases in the proportion of correctly predicted BWS non-exceedances. Regardless of 

the season, the E.coli clarity models performed well as they presented with at least 73% 

sensitivity, specificity and accuracy at the crossover value (see Table 1 and Figure 3).  
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Figure 2: Plots of river E.coli concentrations versus water clarity. 

 

Table 1 Model performance of seasonal water clarity trigger values used to fit 

exceedances and non-exceedances of 8103 nationwide E.coli data. 

Parameter Summer Autumn Winter Spring All seasons 

Trigger Value (m) 1.1 1.1 0.5 0.6 0.8 

True Exceedances of BWS 133 191 195 188 698 

Total number of exceedances 181 242 231 234 887 

Total number of observations 1952 2064 2043 2044 8103 

Sensitivity (%) 73.48 78.93 84.42 80.34 78.69 

Specificity (%) 76.76 79.36 79.08 80.22 77.63 

Accuracy (%) 76.46 79.31 79.69 80.23 77.75 

Trigger values were obtained from cross over plots for each scenario of climatic season. Performance of the classification 
scheme was assessed against a single sample BWS of 540 CFU/100mL as in the New Zealand National Policy Statement on 
Freshwater Management (NPS 2014). 

 

During summer and autumn, the crossover (trigger) value was observed to be 1.1m 

(Table 1) i.e. on a nation-wide scale, there is a high likelihood that elevated levels of 

faecal indicator bacteria, above the E.coli BWS, would be present in rivers when the 

stream or river water clarity was lower than 1.1m. At this trigger value, 324 out of the 

423 total E.coli BWS exceedances observed in the summers and autumn of the 9-year  

period were correctly predicted (i.e. 133 +191, see Table 1).  

During winter and spring, the crossover (trigger) value was observed to be lower, 0.5m 

and 0.6m respectively (Table 1), i.e. on a nation-wide scale, during these seasons, there 

is a high likelihood that elevated levels of faecal indicator bacteria, above the E.coli BWS, 

would be present in rivers when the stream or river water clarity was lower than 0.6m. At 

this trigger value, at least 383 out of the 465 exceedances observed in the winters and 

springs over the 9-year period were correctly predicted (i.e. 195+198, see Table 1). This 

trigger value also correctly predicted a high proportion of the non-exceedances observed 

in the winters and springs of the 9-year period, with a minimum specificity of 79% (Table 



1). Regardless of the climatic season considered in this study, the E.coli clarity models 

performed well as they presented with sensitivity, specificity and accuracy that ranged 

between 72.82% and 100% (Table 1).   

 

 

Figure 3: Receiver operating characteristic (ROC) plots of sensitivity, specificity, and 

accuracy versus incremental water clarity ‘trigger’ values that predicts E.coli BWS 

exceedances at 77 freshwater sites nationwide during different seasons. Performance of 

the classification scheme was assessed against a BWS of 540CFU/100mL as in the New 

Zealand National Policy Statement on Freshwater Management (2014). 

 



Our results show that if swimmers were to avoid river waters with <1.1 m black disc 

visibility during autumn and summer or river waters with <0.5 during spring and winter, 

they would also avoid microbial hazards that are associated with exceedances of the 540 

CFU/100 mL single sample bathing water standard. These water clarity thresholds could 

then be used by relevant authorities to build an early warning system which could be 

communicated to the public. This could result in warnings like, ‘if you cannot see your 

feet in an ankle-deep water, don’t bother swimming’. It is important to note that the 

1.6m default water clarity guideline currently applied in New Zealand as indicative of safe 

swimming conditions, does not translate into safety, from a microbiological hazard 

perspective. Instead, it is more around water safety (seeing the bottom and obstructions) 

rather than a human health indicator. For instance, based on Figure 3, applying a 1.6m 

threshold will predict that a stream is safe for recreation when it actually contains E.coli 

at concentrations above the bathing water standard (almost half of the predicted times, 

based on the comparatively lower model specificity and accuracy associated with this 

threshold.  

Although previous articles (Collins, 2003; Davies-Colley et al, 2018) reported on the use 

of water clarity to estimate E.coli concentrations, there was no consideration for the 

differences in the ability of water clarity to predict E.coli concentrations during different 

seasons, land use, geology, and stream order classifications. Our study thus advances 

the hypothesis reported in the Davies-Colley et al (2018) study by showing that water 

clarity thresholds applied to predict E.coli concentrations differ across different climatic 

seasons. Our study also advances the hypothesis reported in the Davies-Colley et al 

(2018) study by applying receiver operating characteristic (ROC) curves to optimize the 

determination of water clarity ‘thresholds’ that predict exceedances of the bathing water 

standard (see Figure 3). This ROC approach guides a selection of an optimum decision 

threshold where the maximum number of exceedances are correctly identified and is a 

reasonable trade-off between sensitivity, specificity, and accuracy (Arad, Housh, 

Perelman, & Ostfeld, 2013).   

We note however that there are potential limitations to the modelling approach in our 

study.  For instance, while our focus was to model the relationship between water clarity 

and faecal indicator bacteria, it does not differentiate between contributions of faecal 

bacteria from sediment bed and from the watershed. There was also no delineation 

between free and particle-associated faecal bacteria. In the future, sediment deposition 

and resuspension fluxes of faecal bacteria across the sediment bed–water interface at 

river-specific levels could be incorporated into the model. Based on this, it would be 

possible to apply the model to hypothetical scenarios that can potentially evaluate the 

impact of varying catchment management conditions as well as settling and resuspension 

conditions on E.coli concentrations observable in the water column. 

Typically, bacteriological water quality at designated sampling sites are thought to be 

representative of that particular water body. However, considerable spatial variability has 

been documented over scales of 10 m and more (Schang et al, 2018; Boehm et al 2009). 

It is thus hoped that future studies in New Zealand will combine E.coli and water clarity 

data with geographic information systems in a way that dynamically captures both spatial 

and temporal dimensions. A similar approach was adopted by Money et al. (2009) in a 

study that combined E.coli and turbidity data in a river-based space/time geostatistical 

framework for basin-wide assessment of faecal contamination.  This can harness the 

power of aerial photography and satellite-based remote sensing to provide real-time 

aerial estimates of water clarity-based prediction of E.coli conditions. 



4 CONCLUSION 

In this study, direct negative correlation between water clarity and FIB concentrations 

was observed for most major rivers and tributaries in New Zealand. This relationship was 

used to develop  predictive models that can produce estimates of E.coli concentrations  

before waiting for the 24-48-hour reporting time that conventional monitoring procedures 

require. Results show that if swimmers were to avoid river waters with <1.1 m black disc 

visibility during autumn and summer or river waters with <0.5 during spring and winter, 

they would also avoid microbial hazards that are associated with exceedances of the 540 

CFU/100 mL single sample bathing water standard. Water clarity trigger values defined 

by the model can be used by authorities to alert recreational users of possible high faecal 

bacteria values. The developed models can provide a faster estimation of E. coli 

concentrations, allowing the public to engage in water quality monitoring, and also to 

make informed decisions on whether it is safe to swim at their favourite swimming spot. 
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