

Rigid And Flexible Pipe Design, Installation And Lifetime Cost

Tony Gordon Technical Principal - Three Waters

Introduction

- Pipes are too often 'buried' rather than 'installed'
- Pipes are typically identified as either 'rigid' or 'flexible'
- There is no fundamental reason to exclude either pipe type from consideration
- The design and construction requirements for both differ
 - These differences have an impact on installation and lifetime costs
 - These differences need to be understood and considered to provide a best-value installation

Contents

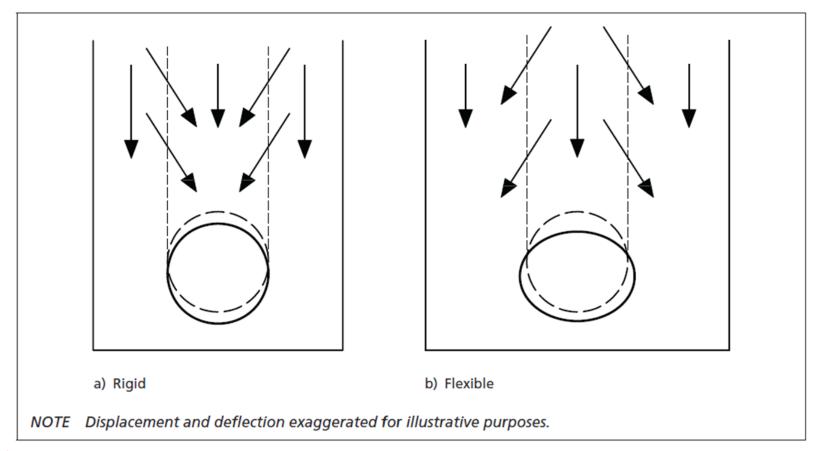
- Some Basics
- Pipe Support
- Construction
- Construction Monitoring
- Asset Life
- Cost Implications
- Summary
- Questions

Some Basics

- What is a rigid pipe and what is a flexible pipe
- Basis of design
- Different behaviour under load
- Some terminology

What is a rigid pipe and what is a flexible pipe

 The definition depends upon the pipe's response to external loading and its interaction with the surrounding soils


The Basis for Design

 The basis for design is the interactive system consisting of the pipe and the surrounding soil

Different Behaviour Under Load

(From BS 9295)

Figure 2 Rigid and flexible pipe behaviour

Fill and Support Terms

(From AS/NZS 3725)

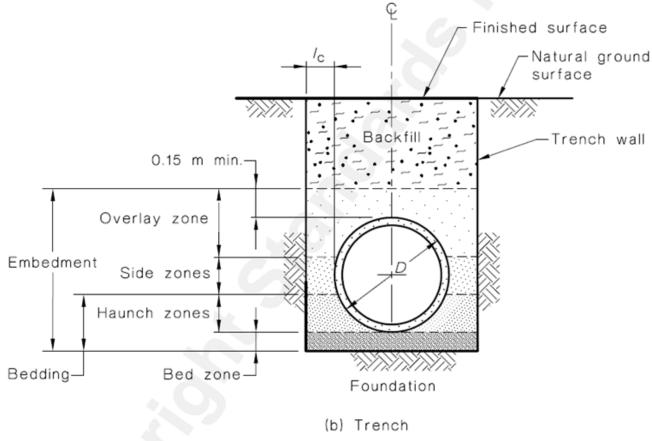


FIGURE 1 FILL AND PIPE SUPPORT TERMS

Pipe Support:

- Bedding requirements similar
- Differ in the 'support zones'
 - Haunch and side zones for rigid pipes
 - Embedment zone for flexible pipes
 - Volumes of these zones differ
- For a given depth and pipe size the designer has control over pipe strength (class) and quality of pipe support or both
 - Pipe support influenced by the material used, its level of compaction, and its width
 - Sometimes a wider trench is required. Embedment volumes increase more than haunch volumes

Construction

- All materials need to be of a suitable quality (see the Standards)
- Compaction to the standard assumed in the design is vital
- In-situ materials may not meet the requirements
- Imported material may be required

Watch for excessive construction loads

Construction Monitoring

- Compaction achieved needs to be monitored
- Post-construction testing should be carried out on all pipes
 - Air test
 - Hydrostatic test
 - CCTV
 - Ovality
 - Important test for flexible pipes
 - Deflection is a major design criteria
- Purpose of these is to test the integrity of the pipeline and its joints

Asset Life

Concrete pipe

Expected to have a service life of 100 years

Plastic pipe

- Design life of 50 years
- If not continuously subject to its design load, service life will exceed 50 years

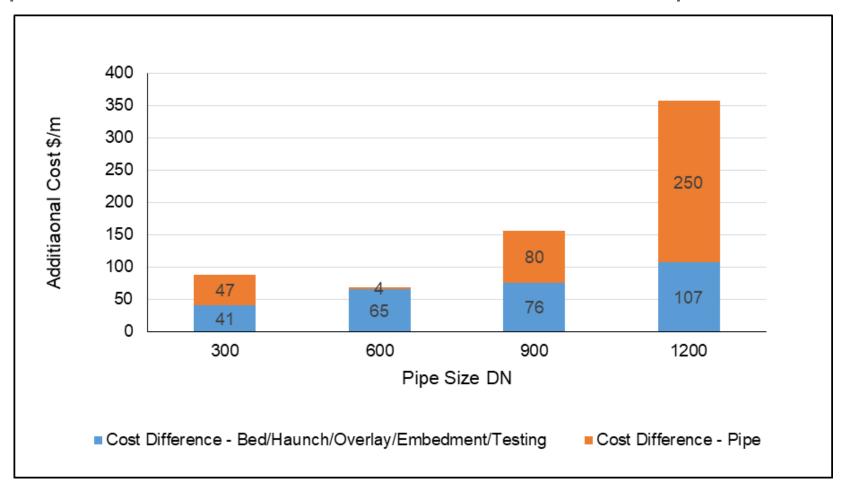
Asset Life (cont.)

- If loading on pipe increases over that assumed in design, or the installation is faulty
 - Concrete pipes crack
 - Plastic pipes deform and may buckle
- Remedial action
 - Concrete can be reinforced
 - Only practical action to counter significant deflection is removal and replacement
- Whole of life costs should always be considered during the design phase

Cost Implications

Volumes

Standard and Pipe Type	DN	OD	Minimum Trench Width	Bed & Haunch Volume	Overlay Volume	Embedment Volume
	mm	m	m	m³/m	m³/m	m³/m
AS/NZS 2566						
PVC/PE /GRP	300	0.30	0.60			0.26
	600	0.60	1.20			0.74
	900	0.90	1.50			1.09
	1800	1.80	2.70			3.53
AS/NZS 3725						
RCRRJ	300	0.37	0.67	0.11	0.19	
	600	0.70	1.10	0.24	0.42	
	900	1.04	1.44	0.38	0.63	
	1800	2.01	2.67	1.21	1.79	


Cost Implications - Example

DN900 Comparison

Item	Unit	Concrete	GRP	Difference
Pipe material cost	\$/m	390	470	80
Bed and haunch volume	m^3	0.38	-	
Bed and haunch cost (imported material)	\$/m	0.38*\$104=39	-	
Overlay volume	m^3	0.63	-	
Overlay cost (re-used excavated material)	\$/m	0.63*\$52=33	-	
Embedment volume	m^3	-	1.09	
Embedment cost (imported material)	\$/m	-	1.09*\$104=113	
Ovality testing	\$/m	-	35	
Total cost	\$/m	462	618	156

Cost Implications - Example

Makeup of Additional Cost of GRP over Concrete Pipe Installations

Summary

- Rigid and flexible pipes differ
 - In their material properties
 - How they behave in the ground
- These differences influence
 - Design
 - Installation
 - Support
 - Testing requirements
- If not considered these differences will impact the asset life and the whole of life cost of the installation

Questions

Water NZ Conference 2018 WSP Opus