

MOVING TOWARDS SMART WWTP'S THROUGH ADVANCED AERATION CONTROL

C.Herman¹, C.Roche², Steve Lamble¹, Ian Dayman¹, J.Dreyfus¹, Nirmala Dinesh³, N. Swain³

- 1. Allwater, Adelaide Services Alliance, Adelaide, SA, Australia
- 2. SUEZ, Paris, France
- 3. SA Water Corporation, Adelaide, SA, Australia

Who is ALLWATER?

SUEZ Allwater

area

SA Water Alliance agreement SA Water Alliance Allwater SA Water Alliance Allwater

Who is ALLWATER?

• Allwater operate and maintain:

- 6 water treatment plants & 8,900 km of water mains
- 6 wastewater treatment plants & 7,200 km sewer mains
- 4 wastewater & 3 stormwater reuse schemes
- Over 400 pumping station & fan sites

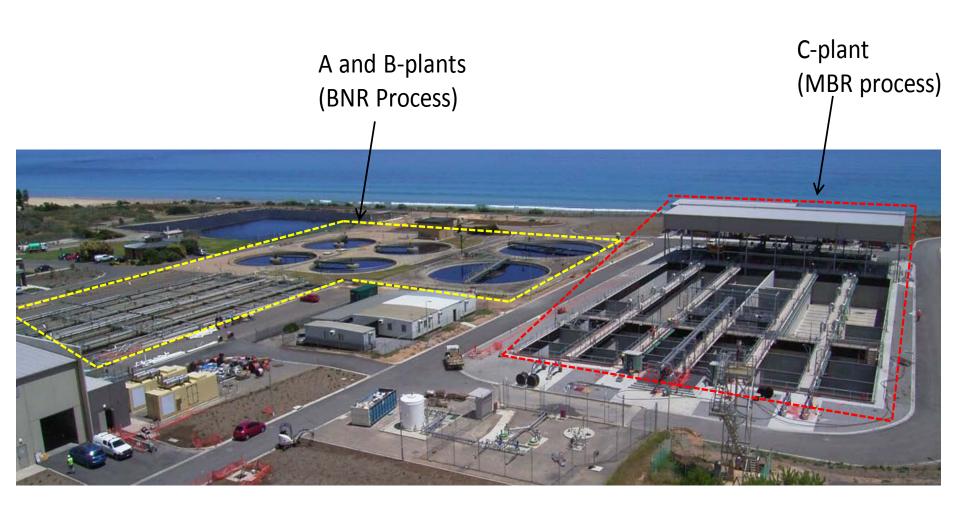
SUEZ Allwater

Presentation

SUEZ Allwater

• Project Overview

- o Objectives
- Technology Overview Analysers and Algorithms
- o Trials Proposed


Results to Date

- o Greenbass™
- o HACH Amtax/Filtrax
- Next Steps & Further Opportunities

Christies Beach Waste water treatment plant: 35 ML/d 870 MWh/month

SUEZ Allwater

In 2015, a feasibility study undertaken by SUEZ France found:

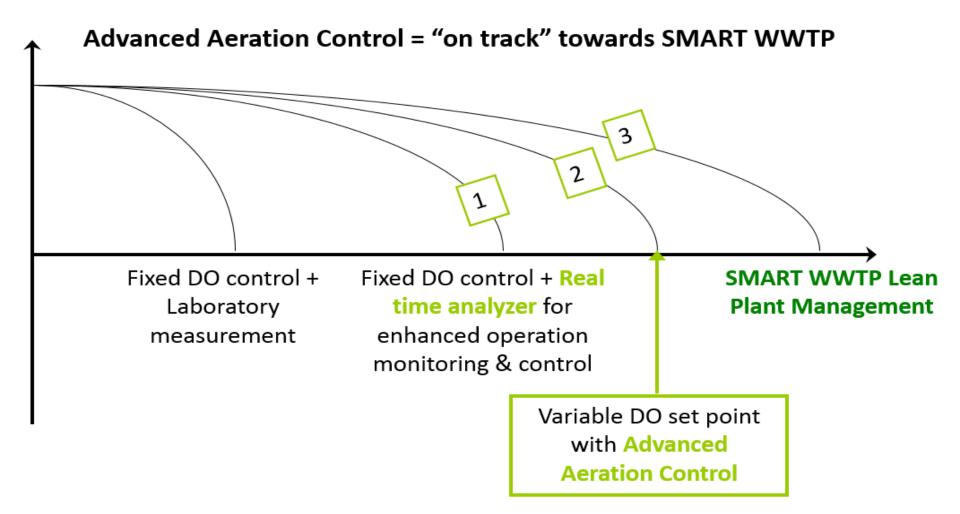
- Potential energy savings estimated between 14-20%
- Return on investment: 2.2 to 3.3 years

Project Overview

Project Objectives

- Implement smart control on a full scale plant as a trial
- Assess advanced aeration control technology
 - Operation
 - Maintenance
 - Results
- Further define costs and potential savings
- Obtain information to assist decision-making regarding further implementation of this technology

AAC = new process controllers, algorithm or architecture that allow the adjustment of aeration system (air production, air distribution) according to actual needs within the biological reactor (biomass + influent loads)


Greenbass[™]

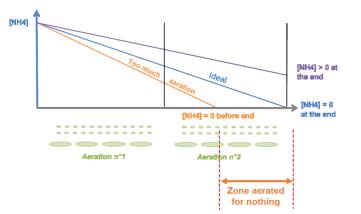
Advanced Aeration Control

Innovation towards SMART WWTP

Technology Overview

What do we need?

Data + Control Analysers: Algorithms:

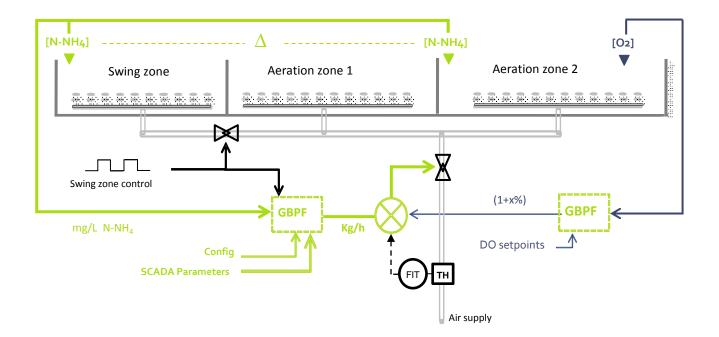

Greenbass™ Plug Flow

 Greenbass[™] Plug Flow is a new AAC system by SUEZ (patent pending)

- Applicable to nitrifying activated sludge processes
- Uses a plug flow hydraulic configuration based on ammonia measurements in the biological tanks

The aim of Greenbass[™] Plug Flow:

- Adapt the oxygen supply and thus the ammonia reaches zero at the very end of the tank
- Reduce energy usage due to reduction in aeration
- Effective wastewater treatment and process monitoring

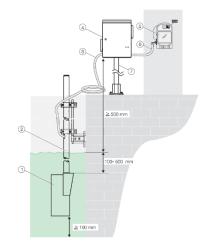


Greenbass[™]

Greenbass[™] Plug Flow principle

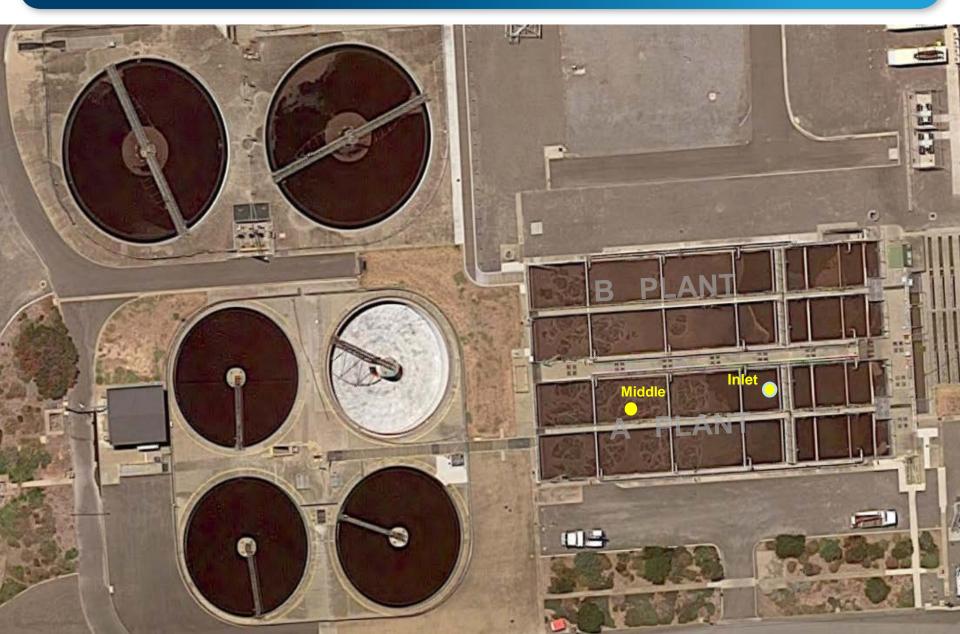
Greenbass[™] algorithm uses 3 actions:

- Predictive control loop
- Feedback control loop
- Failsafe control loop



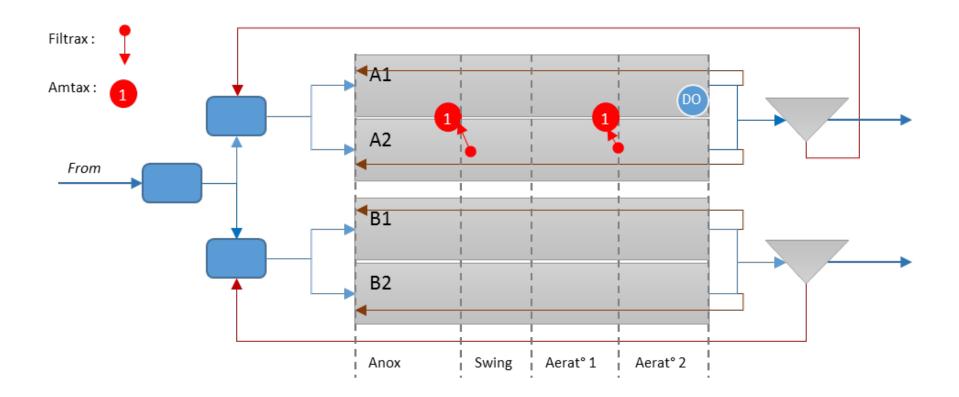
HACH:

 Recommended by SUEZ in 2015 based on assessment of available technologies and field experience



- 2 AMTAX Analyzers (0.05-20MG/L NH₄-N, 2 CHANNEL, Continuous Sample) & 2 FILTRAX purchased with Suez price agreement with HACH
- 12 month maintenance contract

Analyser Locations at CBWWTP



Greenbass Trials

- **Trial 1:** Full Greenbass[™] algorithm on A2 tank with aim to test AAC system
- **Trial 2:** Only the NH₄ feedforward predictive control on one aeration tank. Only the swing zone inlet N-NH₄ analyser will be used in the control algorithm, the mid aeration tank measurement point will be used for information purpose only.

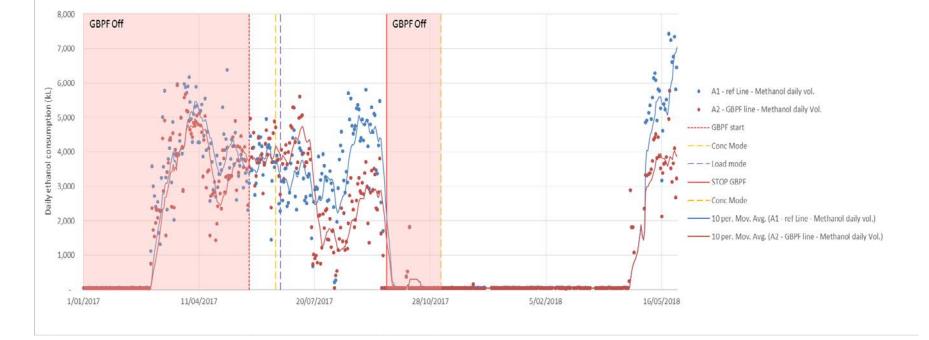
SUEZ Allwater

Greenbass[™] Feedback

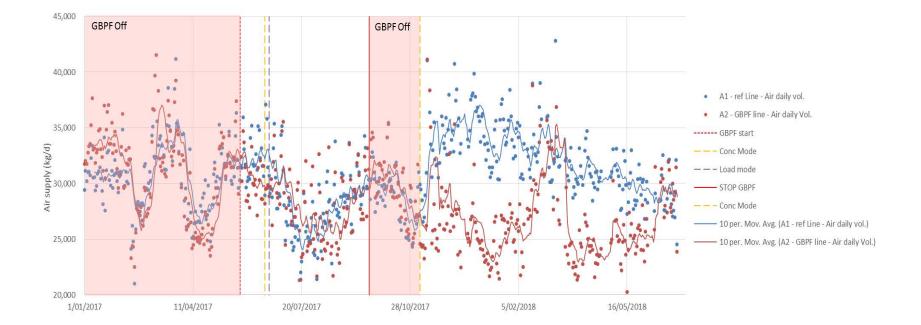
Greenbass in action

With AAC! :32:39 PM 17/10/2017 CHBESS.CHBST-AR-AIT3271-CONPVAF_CV 9.8 CHBESS.CHBST-AR-AIT3272-CONPVAF_CV 1.1 mg/L mg/L 27.0 27.0 23.9 23.4 20. :26:45 AM 0/09/2017 CHBESS.CHBST-AR-AIT3271-CONPVAF_CV 4.6 CHBESS.CHBST-AR-AIT3272-CONPVAF_CV 0.3 mg/L mg/L 17.9 17.9 \$14.9 ê 14.9 11.8 8.8 5.0 2.8 -0.3 1:45:42 AM 9:45:42 AM 5:45:42 PM 0/09/2017 1:45:42 AM 9:45:42 AM 13/09/2017 5:45:42 PM 15/09/2017 1:45 11:01:34 PM 7:01:34 AM 3:01:34 PM 15/10/2017 11:01:34 PM 17/10/2017 7:01:34 AM 3:01:34 PM 22/10/2017 11:01 24/1 4/09/201

SUEZ Allwater


Without AAC...

- Less Ammonia breakthrough during peak flows
- Reduced period at zero Ammonia at the middle of the reactor


Securing our effluent quality and making sure we don't over-perform and waste energy !

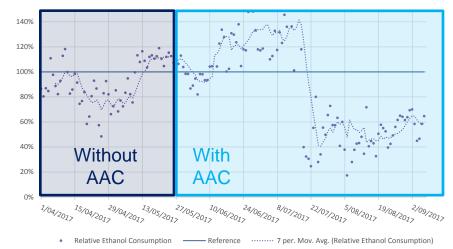
Greenbass[™] Feedback: EtOH dosing

Greenbass[™] Feedback: Air flows

SUEZ Allwater

A Plant WQ Standard Deviation	Ammonia	Nitrate
Conventional DO control	1.10	7.11
Greenbass™ Plug Flow control	0.71	6.14
% Reduction	36%	14%

Greenbass[™] Feedback


Energy and chemical savings through aeration

- Preliminary results
 - Use of statistical models
- Reduction in aeration
 - Different air distribution throughout the day
 - Average 5 000 kg/day saved 140kWh/day

Approx. 16% power savings

- Reduction in Ethanol dosing
 28L 45L/day saved with combined control
 - 20L 45L/day saved with combined contr

Approx. 30% Ethanol saving

Relative Ethanol Consumption A2 v.s. A1

SUEZ Allwater

SUEZ Allwater

Aeration Savings between 14-20% as forecasted

- Potential for more savings in aeration as cannot reduce aeration below the blowers minimum output
- Savings in ethanol dosing due to change in aeration distribution during the day
- Improved Stability of Effluent Water Quality

One Team. Growing People. Creating the future.

SA Water

Adelaide Services Alliance

water

Thank you for your attention

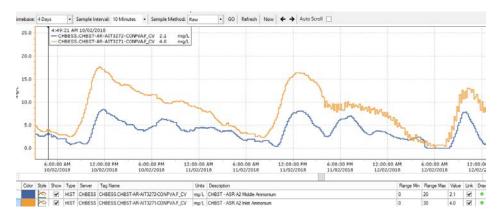
Jennifer Dreyfus, Process Optimisation Engineer Jennifer.dreyfus@allwater.net.au

One Team. Growing People. Creating the future.

HACH Amtax / Filtrax Feedback

SUEZ Allwater

Results and operability:


- Instrumentation running reliably since February 2017
- Quality and reliability of the data sufficient to trust our process control with!

Maintenance

- Overall limited maintenance, mostly cleaning of the sampling tubes and vials (once every couple of months) and replacing the reagents when required

Issues

- Biofilm accumulation in the sampling tubes and vials leading to irregular trend but overall trend acceptable:

- UF membrane damage possibly leading to SS entering the sampling system