
Next Generation Anaerobic Digestion

Dave Parry, PhD, PE, BCEE

September 2019

Digesters are the Engine of Water Resource Recovery Facilities

SOUND GRO

Biosolids & Nutrients

BNEW: Biosolids, Nutrients, Energy, and Water

Organic

Waste

Resource Supply

Reclaimed Water & HydroThermal

Digester Optimization Components

- 1. Digestion process (mesophilic, thermophilic, pasteurization, hydrolysis)
- 2. Digester Structure and Shape (pancake, eggs, tall glass of OJ, waffles)
- 3. Sludge cleaning (grit removal, screenings)
- 4. Feeding (continuous, high solids thickening, codigestion feedstock)
- 5. Withdrawal (surface overflow, emergency overflow, bottom withdrawal)
- 6. Mixing (type, higher solids concentration, rapid volume expansion)
- 7. Digested sludge dewatering,
- 8. Sidestream treatment (ammonia, struvite, vivianite)
- 9. Digester gas (handling, treatment, use)
- 10. Temperature management (heating, cooling)

High Performance Anaerobic Digestion Limitations

- Maximum Organic Loading Rate
 - Thickened sludge solids concentration
 - Digestion process
- Digester Mixing Capability (solids concentration in digester)
- Ammonia Toxicity
 - Ammonia N concentrations greater than 3,000 mg/L can be toxic

Features of Digestion Processes for Optimizing Capacity and Performance

Feature	Mesophilic	Mesophilic High Solids	Mesophilic Acid Hydrolysis	Thermophilic	Mesophilic Thermal Hydrolysis
Increase in Capacity	Add digesters	Small- Moderate	Add acid digesters	Moderate- High	High
VS Loading Rate	125-175	150-200	150-200	200-300	300-400
Increase in VS Reduction	Small	Small	Small	Moderate- High	High
Increase in Gas Production	0-5%	0-5%	0-5%	10-15%	15-20%
Decrease in Foam Potential	Small	Small	Moderate	Moderate	High
Class of Biosolids	Class B	Class B	Class B	Class A with Batch Tanks	Class A

Digester Mixing Considerations

- Consider site specific conditions, mixing characteristics, and operator preferences
- Be aware of digester mixing types and characteristics
- Be aware of mixing impact on gas entrainment (volume expansion)
- Recognize when ability to mix is the load limiting factor
- Examples of digester mixing installations

Objectives of Digester Mixing

- Biological exchange of food and waste
- Provide even temperature distribution
- Avoid bottom deposition
- Avoid surface accumulation
- Enable high performance anaerobic digestion

Comparison of Digester Mixing

	Pumps and Nozzles	Open Impellers	Draft Tubes Internal	Draft Tubes External	Gas Mixers	Linear Motion Mixers
Energy Demand	High	Low	Low	Low	Medium	Low
0&M	Pumps	Accessible	Roof access	Side access	Compressors	Developing
Location	Wall	Cover	Cover	Wall	Cover, Floor	Cover
Intensity	High	High	Low	Low	Low	Medium
Flow Rate	Low	High	High	High	Low	Oscillating
Feature	Bottom Scouring	High Solids	Single draft tube for silos	Multiple draft tubes	High solids Manage gas	New product

Examples of Anaerobic Digester Optimization

Digestion Optimization Examples

Project	Digestion Process, Biosolids, Energy
Atotonilco, Mexico City	 Mesophilic Digesters, Class B Biosolids Biogas fueled cogeneration
Shafdan, Tel Aviv, Israel	 Thermophilic Digesters, Class A Biosolids Biogas fueled cogeneration
Blue Plains, DC Water	 Thermal Hydrolysis, Mesophilic, Class A Biosolids Biogas fueled cogeneration
Gold Bar, Edmonton	 Conversion of fermenters to Acid Digesters, conversion of Mesophilic to Thermophilic digesters Class B Biosolids, Composting
MBC San Diego	 High solids, Mesophilic, Class B Biosolids Biogas fueled cogeneration
Des Moines, Iowa Gresham, Oregon	 Codigestion, Mesophilic, Class B Biosolids Biogas fueled cogeneration and renewable nat. gas

Atotonilco WWTP, Mexico City

1,990 ML/day (525 MGD), 790 dtpd, Thirty 13 ML (3.4 MGal) digesters 102 MGal total Twelve 2.8 MW CHP units: 33.6 MW total

Atotonilco Modified Eggs

Atotonilco Biogas Holding and Treatment

Seven Gas Holders

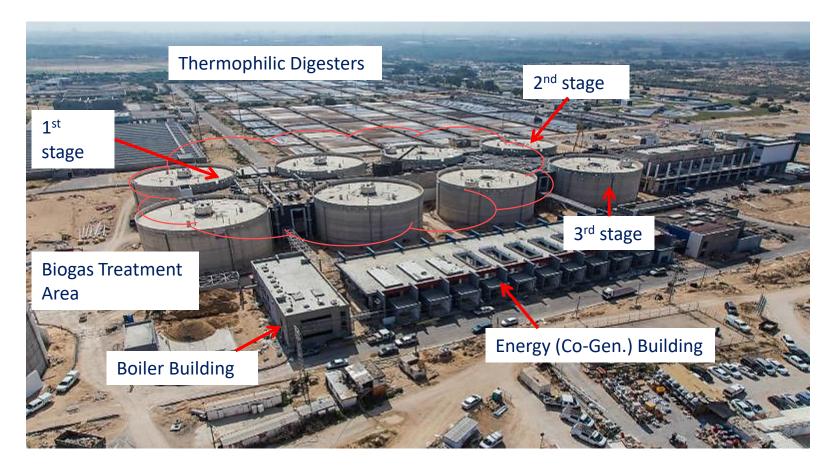
Atotonilco 33.6 MW Cogeneration System

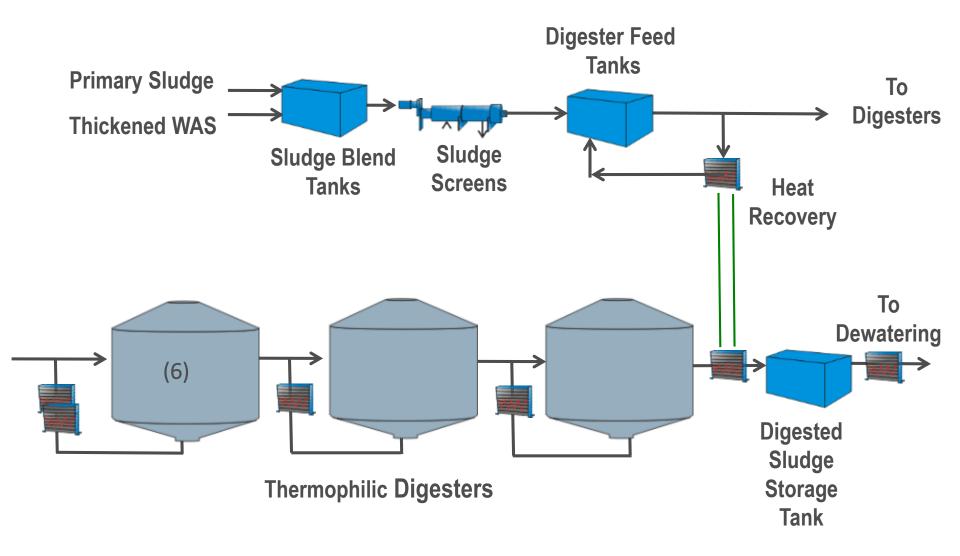
Twelve 2.8 MW CHP units

Shafdan Wastewater Treatment Plant

Biosolids and Energy Resources Instead of Sludge in the Mediterranean Sea

Class A Biosolids

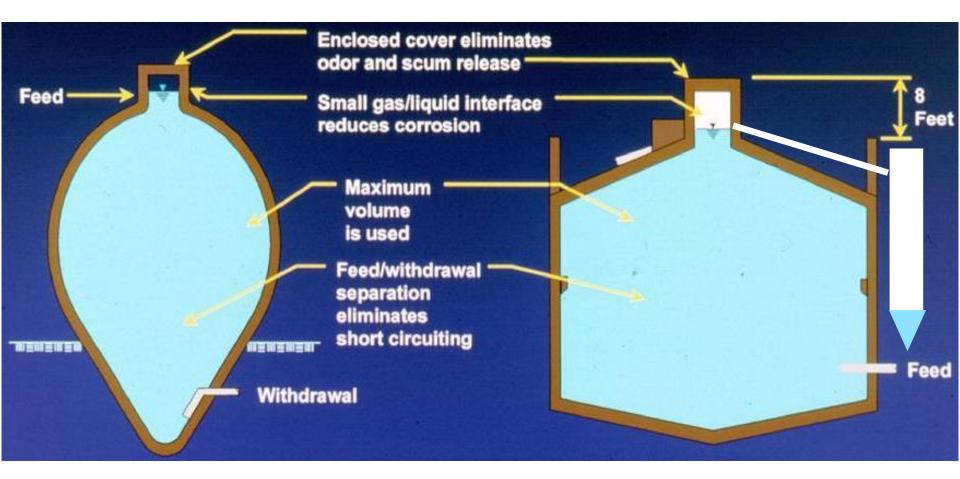




Renewable Energy

Shafdan Wastewater Treatment Plant Digestion and Cogeneration Facility

Multi-Staged Thermophilic Digestion (with storage before and after digesters)



Shafdan Sludge Screening Improve Biosolids Quality and Reduce Digester Cleaning

Similar screening installations at Alexandria and Blue Plains

Surface Withdrawal for Handling Foam and Volume Expansion

Egg-shaped

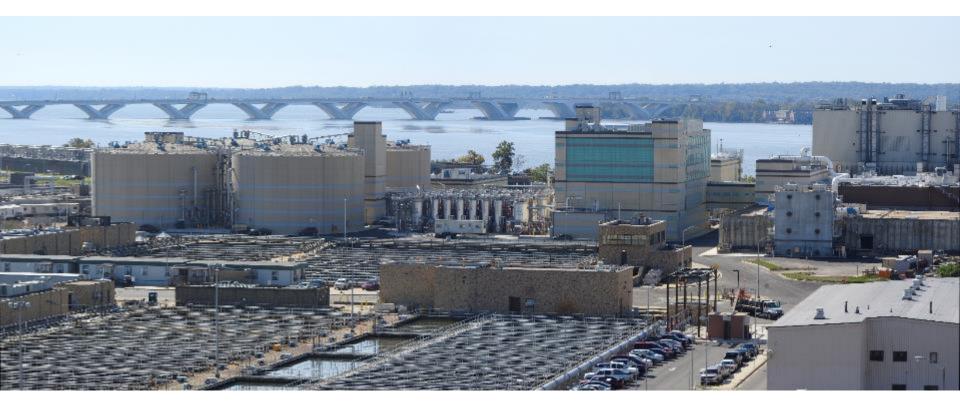
Modified Egg

Shafdan Submerged Fixed Cover Digesters with Surface Overflow Withdrawal to Standpipes

Shafdan Pumped Mixing

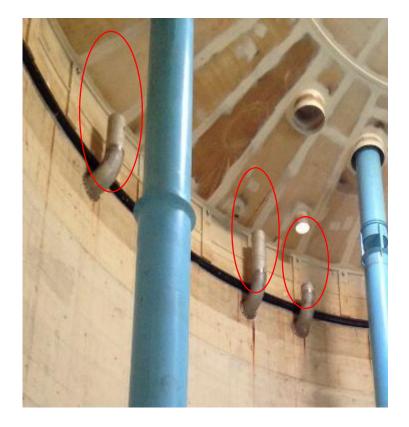
Biological Hydrogen Sulfide Removal System

Shafdan 11.2 MW Cogeneration System



Eight 1.4 MW Packaged Cogeneration Units

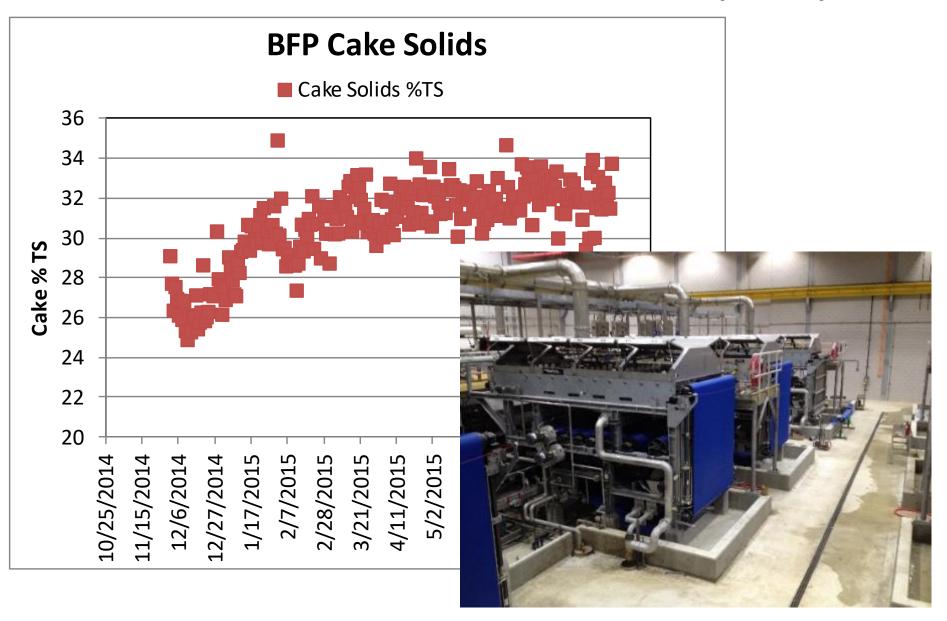
Sludge Heat Exchangers for Thermophilic Digester Heating and Heat Recovery


DC Water, Blue Plains WWTP Thermal Hydrolysis Process and Anaerobic Digestion

Producing Class A Biosolids for Resource Recovery was the main goal!

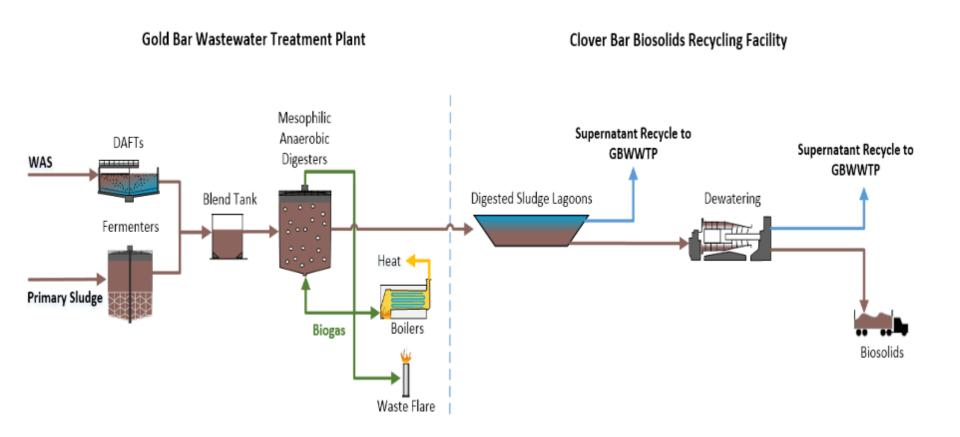
Sludge Withdrawal and Provisions for Volume Expansion

- Volume reserved for expansion
- Three overflows: normal, backup, and emergency



DC Water Draft Tube Mixing

The belt filter presses are producing an excellent cake because of thermal hydrolysis

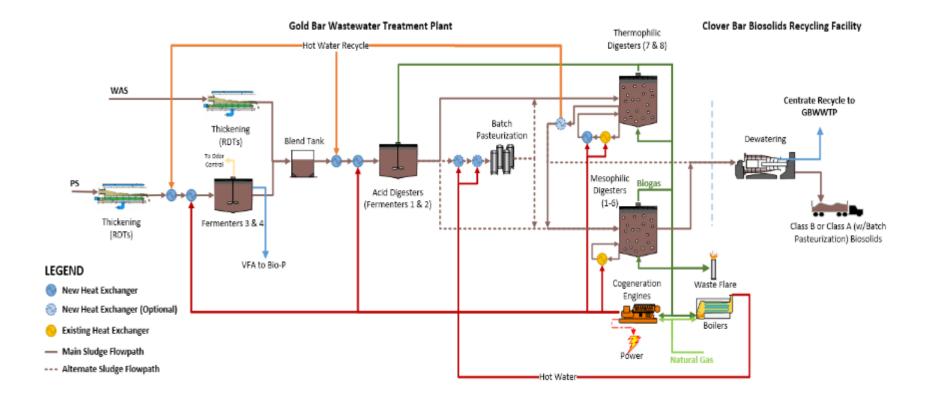


Gold Bar Wastewater Treatment Plant Edmonton, Alberta, Canada

- Integration plan for biosolids, nutrients, energy, water, and solid waste
- Drivers: Increased digester capacity, class A biosolids, energy neutral
- Strong desire to avoid building additional digesters
- Near term consistent with long term plan

Existing Mesophilic Anaerobic Digestion Solids Processing System

Gold Bar Submerged Fixed Cover Digesters 7&8 Designed for Thermophilic Digestion Operation

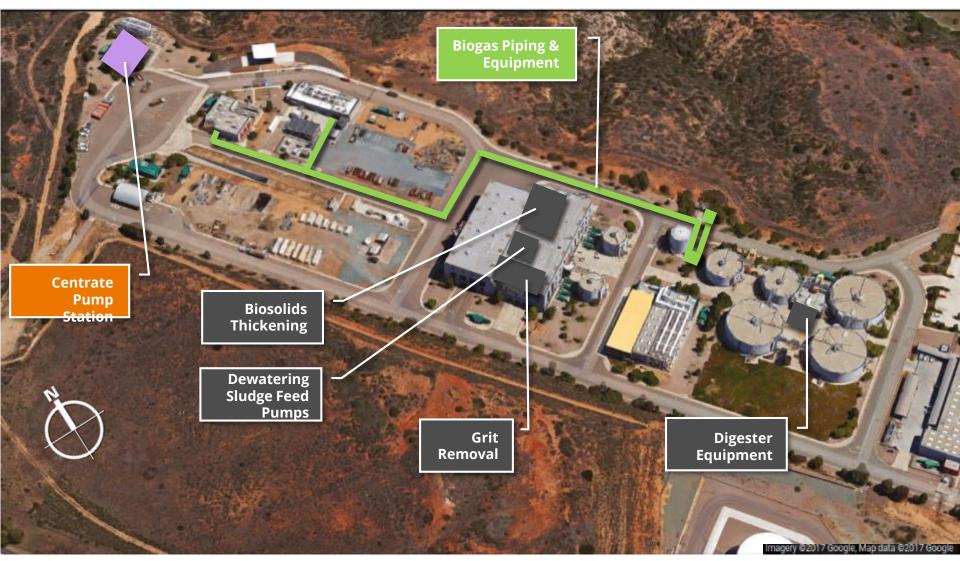


Surface Withdrawal to a Standpipe Handles Foam Digesters 1-6 are being Converted to Surface Withdrawal

Foam Management at Gold Bar

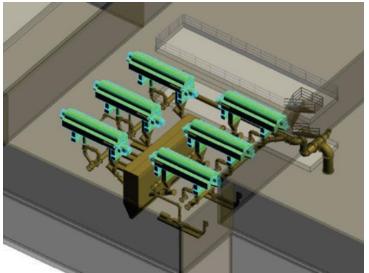
- Prevent foam
 - Controlling foam in secondary treatment
 - Don't overload digesters
 - Don't abruptly change digester feed characteristics
- Detect foam
 - Measure surface and liquid level
- Control foam
 - Provide surface withdrawal in digester
 - Entrain foam at surface
 - Provide separation from foam and biogas connection
 - Provide process water spray at surface
 - Add anti-foam suppressant
 - Handle foam in gas line with proper condensate tank connection

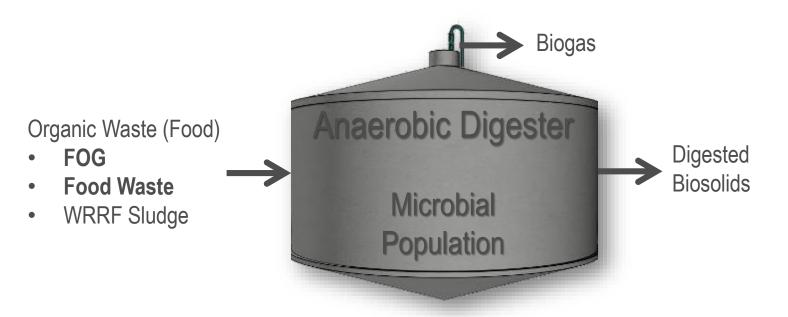
Customized Biological Hydrolysis/Thermophilic Anaerobic Digestion System



Sidestream: Struvite Harvesting

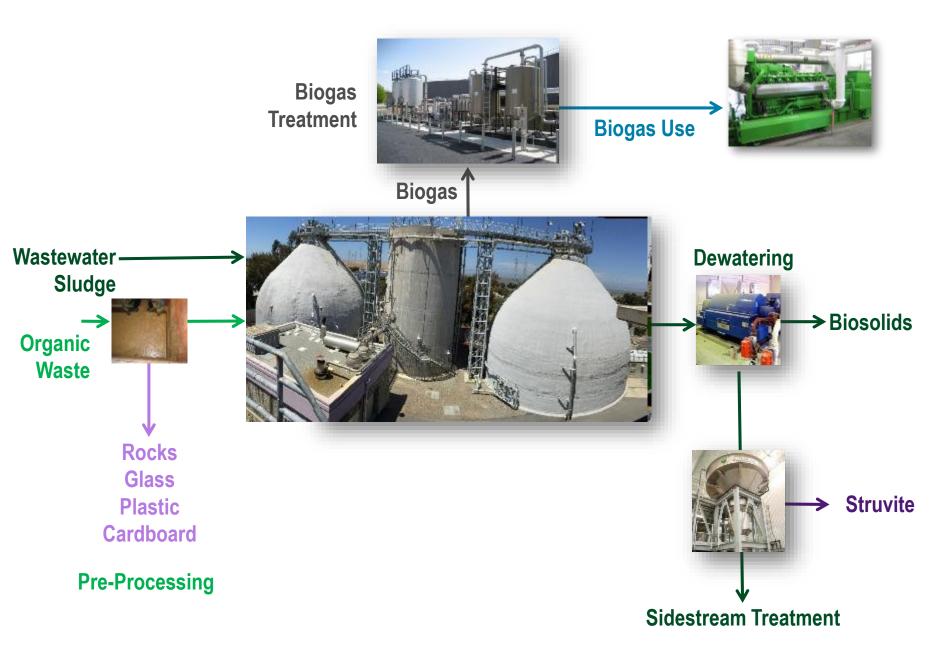
First Pilot Tested at Gold Bar


San Diego Metropolitan Biosolids Center (MBC)


Sludge Thickening, Pumping, and Digester Mixing designed as an integrated system.

- Remove five old thickening centrifuges
- Replace with six new centrifuges
- Replace thickened sludge pumps and enlarge thickened sludge piping
- Equipment sizing and hydraulic design based on 6.5% solids feed to digester
- Digester mixing designed for up to 4.0% solids in digester

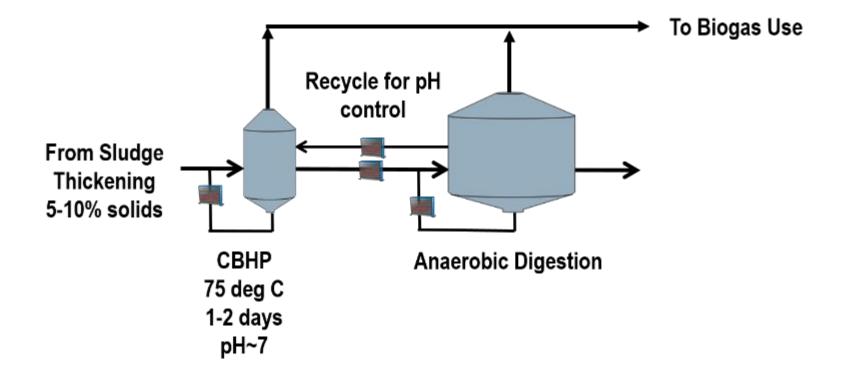
F:M Organic Loading Rate for Anaerobic Digesters

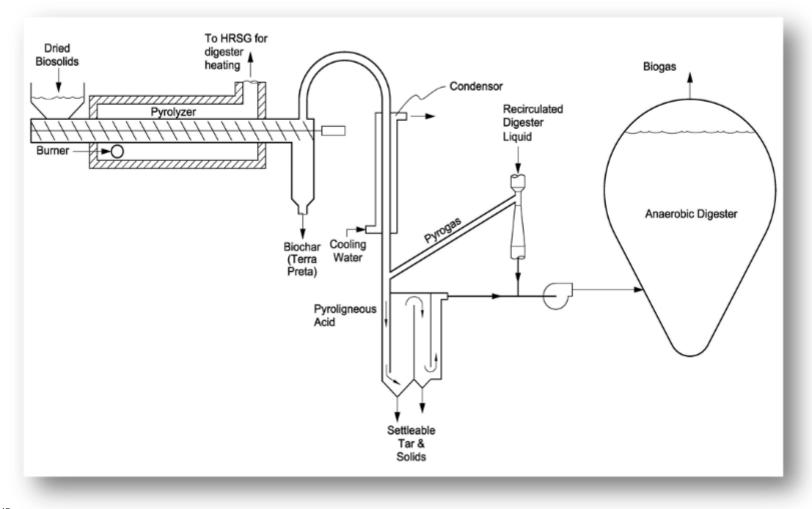


- Specific Energy Loading Rate (SELR) accounts for both feed and digester characteristics
- The strength of the feed is measured by COD and the microbial population by VSS in the digester: SELR: 0.24 kgCOD/day/kgVSS
- SELR is a food to microorganism (F:M) ratio for digesters
- Digesters with greater microbial populations (measured as VSS) can be fed more food (measured as COD)
- For WRRF sludge only, the Specific Volatile Solids Loading Rate (SVSLR) can be used: SVSLR: 0.16 kgVS/day/kgVSS

Codigestion Components for Resource Recovery

Digesters at the Des Moines Water Reclamation Facility


Truck Loading Facility for Receiving Organic Waste


Gresham Wastewater Treatment Plant Gresham, Oregon

Process Diagram of C. Bescii Hydrolysis Process

Process Diagram of Pyrolysis of Dried Biosolids and Condensate Digestion

State of the Art Practice for Anaerobic Digestion Components

Component	State-of-the-Art Practice			
Anaerobic Digestion Process	Site specific: pre-treatment (hydrolysis), mesophilic digestion, thermophilic digestion			
Digester Tank and Cover	Modified egg-shape, tall silo configuration			
Debris Removal	Sludge grit removal and sludge screening prior to digestion			
Sludge Thickening	Thicken sludge for high solids concentration feed to digesters			
Sludge Temperature Control	Reliable heat recovery and supply with compatible temperatures			
Digester Mixing	Dependent on owner's objectives			
Sludge feeding and withdrawal	Storage, continuous feeding, surface and bottom withdrawal, emergency overflow provisions for volume expansion			
Digested sludge dewatering and side-stream management	High solids dewatering and nutrient removal from sidestream treatment			
Biogas handling, treatment, and use	Condensate removal, comprehensive biogas treatment including hydrogen sulfide, moisture, and siloxane removal; biogas fueled combined heat and power system; carbon dioxide removal and renewable natural gas to pipeline or vehicles			

Next Generation Anaerobic Digestion

Dave Parry, PhD, PE, BCEE Dave.Parry@Jacobs.com

© Copyright Jacobs

JACOBS

September 19, 2019

www.jacobs.com | worldwide