Modelling Firefighters

Addressing the mismatch between Fire Code and Hydraulic Model Outputs

ur future.

Fire flow availability – Fire flow requirements

Mismatch between Fire Code and Modelling Outputs

Fire Code

- Fire Code (SNZ PAS 4509:2008) is "Hazard" (building) focused
- Requires assessment of simultaneous flows from up to 8 hydrants, within acceptable distances (135m, 270m)
- Calculations of required flow depend on floor area, building use, etc.

Modelling

- Models are network focused.
- A calibrated network model can predict the available fire flow at 10m pressure
- Currently can only do this from one hydrant at a time
- Currently no method for applying this at the property level

Model outputs

Fire Code

Using the Fire Code to determine risk across a network

What we have done in the past

- We have assigned a required fire flow to properties based on planning information (generally what land use zone the building is in)
- We have assessed which hydrants can be used by eye or using a radial distance
- We have used "engineering judgement" to estimate the combined hydrant flow based on individual hydrant flows

What we need

- A way to automatically determine the required fire flow for a property
- A way to determine which hydrants can be used to supply the required flow
- A way to determine what the combined flow of the hydrants is

Problems with current approach – multiple hydrants

Problems with current approach – multiple hydrants

- Modelled flow represents demand which will draw network to 10m, not actual hydrant flow.
- Max actual hydrant flow should be assumed around 35 l/s (Fire Code)
- Flow at one hydrant will affect flow at the next hydrant
- If hydrants are at different elevations, 10m delivery pressure at one hydrant is at different HGL than 10m at the next hydrant.

Problems with current approach – linear pipe distance

- No info on property level
- Manual checks where hydrant flows seem low
- Guesswork!

Problems with current approach – radial distance

Comprehensive approach to applying the CoP

ZONE-BASED

BUILDING-BASED

BUILDING-BASED

Problem: There needs to be a practical and efficient way to model fire flow for large areas

How much water is required per building??

How much water is required per building??

Fire Load + Fire Cell \rightarrow FW Classification

Our Approach Applying Fire Service.. CoP

- A Conservative 'First Pass' Approach
- Not perfect Developing & Improving
- BUT Practical and Efficient
- Backed by Modelling Analysis
- Criteria Developed

FW Classification – Process Map

Fire Emergency NZ (FENZ)

- Risk Classification Map
- Different criteria for fire risk likelihood, consequence
- Works with FW Classification not instead of
- Allows prioritisation of upgrades

Fire Flow Modelling – A Comprehensive Approach

FW2 (Residential)

- 1. Check at least 1 hydrant within 135 m
- 2. Run an automated fire flow test
- 3. Apply criteria and assess

FW3-6

- 1. Check at least half the max no. of hydrants within 135 m
- 2. Run an automated fire flow test
- 3. Apply criteria and assess

	Reticulated water supply			
Fire water classification	Required water flow within a distance of 135 m	Additional water flow within a distance of 270 m	Maximum number of fire hydrants to provide flow	
FW1	450 L/min	_	1	
	(7.5 L/s)			
	(See Note 3)			
FW2	750 L/min	750 L/min	2	
_	(12.5 L/s)	(12.5 L/s)		
FW3	1500 L/min	1500 L/min	3	
	(25 L/s)	(25 L/s)		
FW4	3000 L/min	3000 L/min	4	
	(50 L/s)	(50 L/s)		
FW5	4500 L/min	4500 L/min	6	
	(75 L/s)	(75 L/s)		
FW6	6000 L/min	6000 L/min	8	
	(100 L/s)	(100 L/s)		

Fire Flow Modelling – A Comprehensive Approach

FW2 - Residential

Take <u>average</u> of closest two hydrants

FW3-6 – Non Residential

Manual check critical sites / or where point flow approach may not be accurate to verify the process

• Take *median* of max. allowed hydrants

FW Rating	FAIL (<90%)	MARGINAL (90-110%)	PASS (>110%)
2	< 18	18 < x < 25	> 25
3	< 45	45 < x < 55	> 55
4	< 90	90 < x < 110	> 110
5	< 135	135 < x < 165	> 165
6	< 180	180 < x < 220	> 220

Example – Wellington suburb

Example – Wellington suburb

Residential clusters

- Many with > 25 L/s within 135 m
- Looking at using hydrant with highest flow not just closest
- Trying 'street tracing' approach to improve

Solution – which hydrants to use?

- Main assumption: the primary access route for firefighters to all properties will be from the road.
- GIS data sets required:
 - Properties with fire class assigned
 - Hydrants with model outputs assigned (available fire flows at 10m residual pressure)
 - Roads must be a "connected" data set (We have used OpenStreetMap)

Solution – which hydrants to use?

- Methodology
 - 1. Assign each property to a road
 - 2. Assign each hydrant to a road
 - 3. From each property, measure linear length along the road to determine which hydrants are available
 - 4. Determine available fire flow from the set of available hydrants using the WSP-Opus method

Solution - which hydrants to use?

• Lessons learned:

Use the right roads

Use the right hydrants

Manual checks using aerials where things look off

Solution - which hydrants to use?

Next Steps / Potential Issues

- More testing!
- Other water authorities property data sets may not be as consistent as WWL
- Discussions with Fire and Emergency

Conclusions

The Wellington Water panel has worked together to develop a way to apply the Fire Code consistently across an entire water network on a property basis.

- Fire Class can be automatically assigned
- Combined fire flow for a set of hydrants can be calculated from model outputs
- The set of hydrants for each property can be automatically identified