

City of Toronto Basement Flooding Capacity Assessment Studies

Generating Wet Weather Flows Using RTK March 11, 2021

Toronto Basement Flooding Capacity Assessment Studies (CAS)

Project Overview

The What, Where, When & Why? The What?

- The Capacity Assessment Studies (CAS) are part of a larger programme – the Basement Flooding Protection Programme (BFPP)
- Reducing surface flooding & stormwater entering all sewer systems
- Identifying capacity shortfalls & recommending sewer system improvements / infrastructure upgrades
- The identification & development of Schedule A/A+ Assignments

The What, Where, When & Why? The When?

- Schedule is a primary driver
- The primary goal is to upgrade infrastructure as quickly as possible
- The approximate timeline for each Project is expected to be 42 months (including study and pre-design components)
- Started CAS phase in Jan 2018, due date Sept 2021

The What, Where, When & Why? The Why?

- The August 19, 2005 event
- 4,200 basement flooding complaints
- Creation of the BFPP in (2006)
- Develop comprehensive plans to reduce risk of flooding in 31 Study
 Areas that experience flooding in severe storms
- Expanded in 2013 to 67 Study Areas

The Why, What, Where & When? Summary

"Solutions ... to increase the capacity of municipal underground and overland drainage systems. The objective of this effort is to reduce the risk of future basement and surface flooding, by reducing the risks of flooding coming from shortfalls in the capacity of the municipal drainage

systems."

. . .

And we need them NOW!

Toronto Basement Flooding Capacity Assessment Studies

The Problem

Programme

Question: How could we deliver this programme in the timeframe?

- Data is key. However...
- Model calibration of a network this size can take years & cost \$Ms
- Scale of survey programme would be enormous to plan & execute
- Calibration activities themselves would take significant resourcing
- There is no guarantee of data quality & calibration output
- There simply wasn't the time... so what was the alternative?
- RTK Approach (fairly common in N. America)

Resourcing - We're Better Together

With programme key, additional resources were sought to help deliver

Stantec Involvement

What did we do?

- Responsible for all Study Areas within Bundles F & D, TM1 4
- A total of 7 Study Areas, both STM and SAN
- NZ team asked to assist with Bundle F Study Areas for TM2
- Wellington team lead SAN, Auckland team lead STM
- NZ team now responsible for all SAN activities within TM3

Toronto Basement Flooding Capacity Studies

Wet Weather Flows – The RTK Approach

Confirming the approach

- Bundle F had no rainfall events of significance in 2020
- Historic data was only in trunk meters, and of small events in 2019
- Needed flows for large magnitude events
- Develop 'representative' RTK parameters <u>not calibrated</u>
- The RFP called for a different approach to WWF modelling, whereby calibration was eliminated in favour of using a 3L/s/ha value as a representative extreme event 'stressor' of the SAN collection system

No Trunks Allowed

M

lacksquare

ocal' ely

Эſ

The RTK Method #1

The RTK method generates a

hydrograph based on precipitation

and catchment data. The total RDII

into the system is determined by

combining triangular unit

hydrographs from 3 theoretical

characteristics of flow response:

- 1. Rapid inflow
- 2. Delayed inflow
- 3. Slow infiltration

The RTK Method #2

The parameters describe the shape

and volume for each component:

• 'R' is the proportion of rainfall

falling on the subcatchment that

directly enters the sewer system,

- 'T' is the time from the onset of rainfall to the peak, and
- 'K' is the ratio of "time to

recession" to the "time to peak" of the hydrograph.

Baseline RTK & Adjusting R1

R1	T1	K1	R2	T2	K2	R3	Т3	K3	Total R
0.020	0.750	1.000	0.015	1.000	2.000	0.005	0.020	0.750	4.0%

Application within the models

		Evaporation p	profile Tra	de profile	RTK hydrograph	SPR calculation			
		1		Area 3		HOST_Soils			
 Allowing 	Alexand A	1		Area 3		HOST_Soils			
• • •	- 1977 1	1		Area 3		HOST_Soils			
• 10000		1		Area 3		HOST_Soils			
		1		Area 3		HOST_Soils			
		- 1		Area 3	-	HOST_Solls			
		1		Area 3		HOST_Solls			
		1		Area 3		HOST Soils			
		1		Area 3		HOST Soils			
		1		Area 3		HOST_Soils			
		1		Area 3		HOST_Soils			
		1		Area 7		HOST_Soils			
		1				HOST_Soils			
		1				HOST_Soils			
		1				HOST_Soils			
		1		Area 7		HOST_Solls			
						11051_50115			
RTK hydrograph ID	R1	T1	К1	R2	T2	К2	R3	T3	КЗ
t Point	0.035	0.750	1.000	0.015	1.000	2.000	0.005	3.000	3.000
nd Road	0.032	0.750	1.000	0.015	1.000	2.000	0.005	3.000	3.000
19	0.034	0.750	1.000	0.015	1.000	2.000	0.005	3.000	3.000
a 8	0.033	0.750	1.000	0.015	1.000	2.000	0.005	3.000	3.000
- 1 6	0.032	0.750	1.000	0.015	1.000	2.000	0.005	3.000	3.000
15	0.023	0.750	1.000	0.015	1.000	2.000	0.005	3.000	3.000
 1 4	0.032	0.750	1.000	0.015	1.000	2.000	0.005	3.000	3.000
1_2	0.050	0.750	1.000	0.015	1.000	2.000	0.005	3.000	3.000
a 10b	0.045	0.750	1.000	0.015	1.000	2.000	0.005	3.000	3.000
	0.031	0.750	1.000	0.015	1.000	2.000	0.005	3.000	3.000
 a 1	0.026	0.750	1.000	0.015	1.000	2.000	0.005	3.000	3.000
17	0.024	0.750	1.000	0.015	1.000	2.000	0.005	3.000	3.000
3	0.030	0.750	1.000	0.015	1.000	2.000	0.005	3.000	3.000
11	0.030	0.750	1.000	0.015	1.000	2.000	0.005	3.000	3.000
RTK_0.03	0.030	0.750	1.000	0.015	1.000	2.000	0.005	3.000	3.000

Toronto Basement Flooding Capacity Studies

The RTK Approach – Results & Discussion

RTK – Results (Study Area 60)

RTK ID	Contrib. Area (ha)	R1	Total R	Peak Pipe DWF (m ³ /s)	DWF Rate (L/s/ha)	Total May 2000 Pipe (m ³ /s)	Total Rate (L/s/ha)	WWF Rate (L/s/ha)
A60_Area_1*	118.22	0.048	7%	0.039	0.33	0.364	3.08	2.75
A60_Area_2	17.95	0.025	5%	0.012	0.66	0.062	3.47	2.81
A60_Area_3	39.50	0.040	6%	0.034	0.85	0.151	3.82	2.96
A60_Area_4	24.64	0.030	5%	0.017	0.71	0.090	3.65	2.94
A60_Area_5	23.36	0.042	6%	0.006	0.29	0.073	3.67	3.37
A60_Area_6	48.66	0.030	5%	0.038	0.77	0.177	3.64	2.86
A60_Area_7	17.47	0.025	5%	0.006	0.37	0.052	2.98	2.61
A60_Area_8	22.28	0.033	5%	0.012	0.55	0.081	3.62	3.07
A60_Area_9	155.90	0.044	6%	0.060	0.38	0.514	3.29	2.91
A60_Area_11	42.06	0.030	5%	0.024	0.57	0.152	3.62	3.04
A60_Area_12	38.36	0.040	6%	0.030	0.78	0.139	3.64	2.86
A60_Area_14	14.07	0.020	4%	0.003	0.21	0.044	3.13	2.92
A60_Area_15	16.26	0.022	4%	0.009	0.57	0.058	3.56	2.98
A60_Area_16	84.57	0.041	6%	0.042	0.50	0.284	3.36	2.86
A60_Area_17	13.76	0.024	4%	0.009	0.63	0.048	3.47	2.84
A60_Area_18	18.66	0.022	4%	0.006	0.32	0.059	3.15	2.83
A60_Area_19	38.41	0.037	6%	0.016	0.41	0.129	3.37	2.96
A60_Area_20	17.66	0.033	5%	0.029	1.64	0.083	4.68	3.04
A60_Area_21	32.74	0.050	7%	0.031	0.94	0.121	3.69	2.75
A60_Area_22	53.51	0.050	7%	0.029	0.54	0.154	2.87	2.33
A60_Area_23	12.64	0.035	6%	0.027	2.13	0.063	4.99	2.86
A60_Area_24	41.43	0.022	4%	0.019	0.45	0.142	3.42	2.96
A60_Area_25	28.04	0.020	4%	0.008	0.28	0.088	3.15	2.87

RTK – Discussion #1

- The RTK method allowed the project to progress <u>much quicker than</u> a traditional flow survey & calibration approach would have
- Resulted in <u>significant cost savings</u> as well
- Allowed the client to meet key drivers around programme & develop
 Schedule A/A+ Assignments

RTK – Discussion #2

There were also limitations. The approach often created <u>overly</u> <u>conservative flows and predicted flooding where there were no flood</u>

records to validate against. In several instances we were unable to achieve the target flow of 3L/s/ha without increasing the 'R1' value significantly. Issues found were:

1. Flow being lost from the system via bifurcations or surface flooding

2. Incapacity in the receiving trunk sewer or pumping station

3. Incapacity in the "local" sewer i.e., pipe incapacity

RTK – Discussion #3

- Some good correlation, some over, some under
- Stage 1 did not reveal many systemic issues in Study Area
- Difficult to perform RTK analysis given the sensitivity of the network to flooding to the surface
- Even with modifications to account for these, results were 'mixed'
- Without FM data or further investigations, there is little to go on to deviate from the selected parameters
- These are deemed conservative RTK values

Questions?