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ABSTRACT 

Groundwater is utilised for vital services, including drinking water, irrigation, and 

source water.  It is imperative that groundwater resources are protected from 
increasing anthropogenic activities and that close monitoring of groundwater 
aquifers is undertaken.  Currently, the status of groundwater is monitored by 

testing specific water quality parameters, including major ions, nitrate-nitrogen, 
ammonia-nitrogen, silica, iron, and manganese.  Faecal indicator bacteria are also 

monitored as a proxy for pathogenic bacteria from faecal contamination.  
Currently, these tests are all reactive and indicate a past problem if 'issues' are 
detected.  There is a need for a fast, proactive method to assess the status of 

groundwater.   

While groundwater systems can contain pathogenic bacteria, not all bacteria in 

this environment are harmful.  Nonpathogenic bacteria communities in 
groundwater aquifers play an essential role in nutrient processing.  The 
composition of these bacterial communities adapts to even subtle changes in the 

chemical composition of a groundwater system.  Changes in bacterial communities 
could potentially be used as an early warning of a change in water quality, such 

as nitrate contamination.  

Chemical parameters and environmental DNA (eDNA) were compiled from 
groundwater wells across New Zealand.  The machine learning modellings  

Classification and Regression Training (CART) and Random Forest were used to 
train various regression algorithms.  Several bacterial Phyla were indicated as 

significant predictors of nitrate levels, i.e., Proteobacteria and Thaumarchaeota.   
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INTRODUCTION  

Groundwater provides vital services such as drinking water, irrigation, and source 
water.  These critical services are used to cultivate high-yield crops, sustain human 



and animal health, and provide energy, material production, and functional 
infrastructure (Akhtar et al., 2021).  As the world's population increases, there is 

not only increased demand for freshwater resources but the potential for 
contamination of these freshwater resources.  Groundwater is especially 

vulnerable to contamination in areas where population density is high and human 
use of the land is intensive.  Chemical usage and disposal of waste have the 
potential to move from the surface waters into the groundwater aquifers.  

Therefore, resources such as groundwater are monitored for harmful 
contaminants and pathogens to protect human and animal health.   

Currently, groundwater quality is monitored using chemical testing such as nitrate, 
phosphate, chloride, iron etc., and for faecal contamination, i.e., Escherichia coli 
(an indicator of pathogens).  Current testing methods are not performed in real-

time, indicating a past problem if issues are detected, and the contamination is 
potentially already in the community.  An example is the Havelock North 

Campylobacter outbreak (New Zealand) in 2016, where over 8000 people became 
ill after contaminated drinking water (Gilpin et al., 2020).   

There is a need for a fast, proactive method to assess groundwater status to 

identify groundwater contamination before it is used within the community.  
Groundwater aquifers are home to a wide variety of microbial communities that 

utilise contaminants as energy (carbon) sources, and these communities help to 
remove harmful pollutants from groundwater sources.  Microbes respond quickly 

to subtle chemical changes in their environment, and changes in their diversity 
could be used as an early warning of upcoming changes in water quality.   

Microbial diversity can be screened using environmental DNA (eDNA) (Salis et al., 

2017).  The monitoring of eDNA in groundwater over time could be used to track 
and assess the microbes present in groundwater systems.  Because microbes are 

susceptible to chemical changes within their environment, changes in microbial 
diversity could indicate potential contamination of the groundwater aquifer.   

This paper compiles chemical and eDNA parameters from groundwater aquifers 

across New Zealand.  The aim was to model microbial diversity with water 
chemistry using the predictive modelling tools CART and Random Forest to find 

key organisms that could predict contaminant presence, i.e., nitrate.  The 
detection of specific microbes or changes in their abundance could ultimately be 
used for in-line sensors, automated to signal water quality changes.   

MATERIALS AND METHODS 

SITES  

Forty-nine existing wells from across the North and South Islands of New Zealand 

were used in this study (Figure 1).  Nine wells were selected from the Hawkes Bay 
region, five from the Nelson region, thirty from the Canterbury region, and five 
from the Southland region.   



Figure 1: Location of wells for field sampling 

 

GROUNDWATER SAMPLING 

Groundwater samples were collected from each well using a Twister pump (plastic 
impellor) positioned approximately 1 m from the bottom of the well.  Wells were 

purged for at least three well volumes.   

Samples were collected and sent to Hill Laboratories in Christchurch or Hamilton 
for chemical analyses.  Analyses included dissolved organic carbon (DOC), 

dissolved reactive phosphorus (DRP), nitrite-nitrogen (NO2-N), nitrate-nitrogen 
(NO3-N), ammoniacal-nitrogen (NH4–N), total dissolved nitrogen (TDN), and total 

dissolved phosphorus (TDP).   

Field monitoring was performed onsite and included measuring dissolved oxygen 
(DO) using a calibrated dissolved oxygen meter (TPS WP-82, TPS Pty Ltd, 

Australia), and in situ measurements (conductivity, water temperature and pH) 
taken using a calibrated water quality instrument (TPS WP-81, TPS Pty Ltd, 

Australia).   

Groundwater samples (1 l) were transported to the lab on ice and stored at 4oC 

overnight.  Filters were frozen at -80oC until eDNA extraction.  DNA was extracted 
using the Qiagen DNeasy Power Water® extraction kit (Bio-Strategy Ltd., 
Auckland, New Zealand).  The DNA concentration was measured using a 

NanoDrop® ND-1000 UV-Vis Spectrophotometer (ThermoFisher Scientific).   



EDNA 

Extracted DNA was sent to New Zealand Genomes Ltd (Auckland, New Zealand) 
for MiSeq metagenomic sequencing (2 x 250 bp PE) using the Illumina MiSeq 
platform (Illumina, USA) (Caporaso et al., 2012).  The prokaryotic 16s rRNA gene 

was targeted, the returned sequences were quality checked, trimmed to remove 
barcodes and primers, and the 16S taxonomy was assigned using the DADA2 

(v1.10.1) pipeline (Callahan et al., 2016). 

MODELLING 

A subset of the chemical and 16S eDNA dataset was modelled to assess the 
capability of machine learning to predict nitrate levels using bacterial phyla.  The 
two most important bacterial phyla were chosen and modelled against the WHO 

MAV (Maximum Allowable Value) nitrate classification system (Table 1).  The 
models included CART and Random Forest (v4.6-14).  Random Forest was trained 

with 1000 trees using the training dataset.   

Table 1  WHO MAV nitrate classification system 

NZ Drinking Water 
Standard 

Nitrate-N (mg/l) Category 

WHO MAV 0 to 1 Pristine 

1 to 11.3 Below MAV 

>11.3 Above MAV 

 

RESULTS 

ENVIRONMENTAL DNA 

Seventeen bacterial phyla were present at a level over 1 % relative abundance, 
with the most abundant Phyla being Proteobacteria (Figure 2).  Across all wells, 

common Phyla were present, so a significant difference in bacterial diversity was 
not seen, but the relative abundances of bacteria varied.   



Figure 2: Bacterial abundance over 1 % in wells across New Zealand 

 

MODELLING 

PREDICTIONS WITH CART CLASSIFICATION TREE  

The first node (root node) is the training data set, classifying the entire dataset 

(100 %) as below MAV (Figure 3).  The internal node (decision-making node) splits 
into two sub nodes based on the threshold value of the relative abundance of 

Proteobacteria.  When the relative abundance of Proteobacteria was greater than 
or equal to 60, the nitrate level was categorised as pristine with a probability of 



90 %.  When Proteobacteria had a relative abundance of less than 60, the 
groundwater was classified as below MAV with an 86 % certainty.  Seventy-four 

percent of the groundwater samples fit into this split.  This node divides further 
based on the best feature of the sub-group, and this final node (leaf node) holds 

the decision.  Thus, if the relative abundance of Thaumarcheota was less than 1.9, 
then the groundwater was pristine (67 % accuracy).  If the relative abundance of 
Thaumarcheota was not less than 1.9, the groundwater sample was below MAV 

(92 % accuracy).  From the Thaumarcheota decision node, eight percent of the 
groundwater in this study was classified as pristine, and 67 % was below MAV.  

Figure 3: Predictions with CART classification tree for WHO MAV nitrate levels 

 

Table 2. is a Prediction-Accuracy Table relating the CART model's observed and 

predicted outcome (confusion matrix).  The CART model incorrectly classified two 
pristine predictions (they were below MAV) and two predictions of below MAV (one 

was pristine and was one above MAV).   

Table 2  Prediction-Accuracy Table for predicted and observed MAV nitrate levels 
for CART 

 Observed 

Pristine Below MAV Above MAV 

P
re

d
ic

ti
o
n
 Pristine 11 2 0 

Below MAV 1 24 1 

Above MAV 0 0 0 

 



A graphical representation of the CART classification model accuracy is shown in 
Figure 4.  The points show the observed values from Table 2.  The red points 

indicate an incorrect prediction, while the grey area is where the Below MAV 
samples should fall, and the white area is where the pristine samples should fall.  

This diagram collaborates Table 2. by showing that the two samples observed as 
Below MAV and the sample observed as Pristine were incorrectly predicted.  The 
Above MAV point is not shown in this figure.   

Figure 4: Graphical representation of the CART classification showing the 
observed observations 

 

PREDICTIONS WITH RANDOM FOREST 

Table 3. shows the confusion matrix for the Random Forest model.  The model 

incorrectly predicted two samples as Pristine, three samples as Below MAV, and 
one sample as Above MAV.  The Out of Box (OOB) estimate of the error for the 

Random Forest model was 12.82 %.   

Table 3  Prediction-Accuracy Table for predicted and observed MAV nitrate levels 
for Random Forest 

 Observed 

Pristine Below MAV Above MAV 

P
re

d
ic

t

io
n
 

Pristine 10 2 0 

Below MAV 2 24 1 



Above MAV 0 1 0 

 

DISCUSSION AND CONCLUSIONS  

When the groundwater samples were classified according to Phyla (bacteria), both 
the CART classification and Random Forest models correctly predicted the nitrate 

classification most of the time.  Random Forest is effectively a group of CARTs 
generating many random CART models while also taking a random selection of 

the variables provided to build each CART within the forest.  Because Random 
Forest is based on the CART method, it will give similar outputs to CART, but with 
differences.  Therefore, it is unsurprising that both the CART classification and 

Random Forest models gave similar results in this study.   

While the initial model predictions are straightforward, they indicate that it may 

be possible to predict nitrate levels from microbial diversity data.  The subset data 
used in this study had limited groundwater samples with above MAV nitrate levels.  
The next step in this study is to test the entire dataset in CART and Random Forest 

and test groundwater samples with a more extensive range of nitrate 
concentrations.  We are also investigating predictions of nitrate levels on a higher 

level of microbial diversity, e.g., genera, beginning to look at the other critical 
predictors for overall groundwater health and test the robustness of using these 
predictors over a range of regions across New Zealand.  The aim is to continue 

testing machine learning platforms to ultimately develop an in-line sensor that 
could detect changes in the abundance of selected microbes to predict 

contamination of groundwater resources.   

ACKNOWLEDGEMENTS 

We acknowledge the ESR Data Accelerator program for funding the research and 

Bridget Armstrong and Dr David Wood for being our mentors while undertaking 
this research.  

REFERENCES 

AKHTAR, N., SYAKIR ISHAK, M. I., BHAWANI, S. A. & UMAR, K. 2021. Various 

natural and anthropogenic factors responsible for water quality degradation: A 

review.  Water, 13, 2660. 

CALLAHAN, B. J., MCMURDIE, P. J., ROSEN, M. J., HAN, A. W., JOHNSON, A. J. 

A. & HOLMES, S. P. 2016.  DADA2: High-resolution sample inference from 

Illumina amplicon data.  Nature methods, 13, 581-583. 

CAPORASO, J. G., LAUBER, C. L., WALTERS, W. A., BERG-LYONS, D., HUNTLEY, 

J., FIERER, N., OWENS, S. M., BETLEY, J., FRASER, L. & BAUER, M. 2012.  Ultra-

high-throughput microbial community analysis on the Illumina HiSeq and MiSeq 

platforms.  The ISME journal, 6, 1621-1624. 

GILPIN, B. J., WALKER, T., PAINE, S., SHERWOOD, J., MACKERETH, G., WOOD, 

T., HAMBLING, T., HEWISON, C., BROUNTS, A. & WILSON, M. 2020.  A large 



scale waterborne campylobacteriosis outbreak, Havelock North, New Zealand.  

Journal of Infection, 81, 390-395. 

SALIS, R., BRUDER, A., PIGGOTT, J., SUMMERFIELD, T. & MATTHAEI, C. 2017. 

High-throughput amplicon sequencing and stream benthic bacteria: identifying 

the best taxonomic level for multiple-stressor research.  Scientific reports, 7, 1-

12. 

 


