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ABSTRACT 

Poor quality plant operating data is a common issue for water utilities and limits 

operators’ ability to understand and improve plant performance. Emerging 

technology such as soft sensors and digital twins can improve confidence by 

supplementing and enhancing operating plant data.  

As well as enabling operators to better understand plant performance, digital twins 

and soft sensors can also assist with the development of control strategies to 

reduce operational expenditure and greenhouse gas (GHG) emissions. Watercare 

forecast a greater than $50M spend on wastewater asset operating costs for 

FY2022. The adoption of digital technology therefore has the potential to realise 

significant savings.  

The Rosedale Wastewater Treatment Plant (WWTP) consists of primary 

sedimentation, biological treatment through the Modified Ludzack-Ettinger (MLE) 

process, clarification, UV disinfection, and anaerobic digestion for solids 

stabilisation.  

A digital twin of Rosedale WWTP was developed in 2020 to provide real-time 

insights into plant performance and scenario testing, to support commissioning of 

the fourth MLE reactor. The solution combines biological modelling, machine 

learning, predictive rainfall and scenario analysis. This paper describes the 

development methodology and functionality, including the data, technology and 

analytics that were used.  

Watercare’s 2022 Rosedale Innovation programme comprises two workstreams 

which build on the existing digital twin solution; soft sensors for instrument failure 

detection and opex and greenhouse gas baselining and prediction.  

The soft sensors workstream is focused on the development of soft sensors to 

proactively identify instrumentation drift and failure events. The soft sensors use 

a combination of machine learning and biological models to predict 

instrumentation drift and alert operators to irregular operation. This paper 

describes the development methodology including data exploration and modelling 

techniques.   



The objective of the opex and GHG workstream is to develop real-time operational 

insights to enable the baselining, monitoring, and control of GHG and opex. This 

paper outlines the different data sources and calculations and describes how they 

were codified and surfaced through the digital twin. This workstream also includes 

analysing process emissions. This involved installing nitrous oxide (N2O) monitors 

on MLE4 and calibrating the digital twin to act as a soft sensor for N2O emissions.  

The challenge of unreliable data and instrumentation failure is not unique to 
Rosedale WWTP. The application of emerging digital technology can enhance 

operational plant data through the creation of new data sources. This data 
provides new insights into plant operations and enables operators to consider 

operational strategies to reduce opex and emissions. This paper addresses how 
the Rosedale technology can be scaled to other treatment works to improve data 
quality, optimise opex and GHG emissions and improve instrumentation reliability.   
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INTRODUCTION  

PROJECT BACKGROUND  

The Watercare Rosedale Wastewater Treatment Plant (WWTP) located in 

Auckland, serves a population equivalent (PE) of about 240,000. The process 

consists of primary sedimentation, biological treatment through the Modified 

Ludzack-Ettinger (MLE) process, clarification, UV disinfection, and anaerobic 

digestion for solids stabilisation.  

THE ROSEDALE WWTP DIGITAL TWIN 

In 2020 a digital twin was developed for the Rosedale WWTP to support 

commissioning of the fourth MLE reactor. The digital twin combines biological 

modelling and machine learning with real-time data and dashboards to generate 

new insights into plant performance. Figure 1 provides a conceptual overview of 

the digital twin components.  

Figure 1: Rosedale Digital Twin Components 

 

The digital solutions developed through the Rosedale innovation programme 
leveraged the Rosedale digital twin and are underpinned by the Moata platform. 

Two workstreams were delivered as part of the Rosedale Programme:  

WORKSTREAM 1 – OPERATIONAL COST AND GREENHOUSE GAS  

The objective of workstream one was to identify, control and reduce WWTP 
operational expenditure ($/m3) and Greenhouse Gas (GHG) emissions. This was 



achieved through developing operational dashboards which reported opex and 
GHG emissions of the WWTP.  

WORKSTREAM 2 – SOFT SENSORS FOR DRIFT DETECTION  

The objective of workstream two was to identify sensor drift through the 

development of soft sensors. Using a combination of biological and machine 
learning models, soft sensors were developed to predict plant characteristics and 
alert the operators to potential instrument drift.  

The methodology and results of each workstream are described in the following 
section.  

WORKSTREAM 1 – OPEX & GHG WORKSTREAM 

PROBLEM STATEMENT  

Watercare have a target to reduce operational greenhouse gas emissions by 50% 
by the year 2030. Current estimates indicate approximately 70% of Watercare’s 

operational GHG emissions is generated from WWTP process emissions.  

GHG reporting is done on an annual basis with many of the values based on 

theoretical factors. For example, emissions from reactors are calculated on a static 
population and IPCC guideline emissions factors.  

It is crucial to increase our understanding of GHG and opex sources to enable 

improved control and reduction. By developing real-time dashboards Watercare 
will be able to identify hotspots, trial and monitor control strategies, and view 

trends over time.  

METHODOLOGY  

The GHG and Opex dashboards were developed through the following steps:  

1. Each process area was reviewed to identify any GHG or opex sources. These 
were broadly split into the following categories: energy, maintenance, 

labour, solids disposal, process emissions, and chemicals. Further detail is 
provided in the following section.  

2. Each source was reviewed to identify what data was available to calculate 
the CO2 equivalent or cost. The report inputs 40 unique data streams -
captured from plant SCADA, laboratory sampling results, an operational 

biological model, enterprise maintenance systems (Infor), monthly 
reporting for solids disposal and historic opex reports.  

3. Calculations were developed for each source. These calculations were 
derived from the NZ Carbon Accounting Guidelines (Andrews, J 2021), the 
Watercare opex reports or process calculations.  

4. Data pipelines were developed to automatically ingest data into the Moata 
Digital Twin. This included direct integration of SCADA and sampling data 

into Moata.  
5. The calculations were codified in Moata to automatically calculate the daily 

GHG (CO2 equivalent) and opex (NZD) values.  

6. Visual dashboards were developed to surface the results through a simple, 
easy-to-use interface.  



OPERATIONAL COST AND GHG SOURCES 

The opex sources at Rosedale WWTP included power consumption, chemical 

consumption, labour & maintenance, and solids disposal. The greenhouse gas 
(GHG) sources at Rosedale WWTP included process emissions, power, chemical 

use, and biosolids disposal & effluent discharge.  

Table 1: Operational Cost and GHG Sources  

Source  Consumption Calculation Opex factor GHG factor 

Chemical – 
Gravity Belt 
Thickeners 

(GBT) 
polymer 

GBT 1 polymer consumption is 
calculated from the average 
historic consumption (kg/tDS) 

over 2021/2022 and sludge 
throughput from SCADA. 

GBT 3 polymer consumption 
calculated from polymer flow 
rate & % concentration from 

SCADA.  

 

Chemical costs 
taken from 
2021/22 

Rosedale Opex. 

Thickening 

Polymer 
powder ($/kg) 

 

Polymer = 0.813kg 
CO2e/kg   

Average value for a 

range of polymer, does 
not include transport 

emissions. 

From Moata Carbon 
Portal 

Chemical – 

Centrifuge 
Dewatering 

polymer 

Centrifuge 1,2,3 & 4 polymer 

consumption calculated from 
Polymer dosing rates and feed 

flowrates  

 

Dewatering 

Polymer 
emulsion 

($/kg) 

 

Refer above for 

dewatering polymer 
GHG   

Chemical - 
Utilities 
sodium 

hypochlorite 
(NaClO) 

NaClO consumption calculated 
from storage tank volume and 
level sensor from SCADA 

NaClO ($/L) NaClO = 0.372 CO2e/L 
(assumes 15.7% active 
chlorine) 

From Moata Carbon 
Portal 

Electricity  Total electricity imported from 
grid is calculated from SCADA.  

Total electricity consumption 
is portioned across process 
areas based on equipment 

consumption.  

Equipment consumption was 

based on power rating and 
operating hours. Equipment 
from the load schedule 

<5kWh were excluded, as well 
as UV as it is on a separate 

meter. Equipment >5KW 
accounts for 94% of total 
load.   

Rosedale 
electricity 

contract rates 
for Feb 22 to 
Jan 23 

provided from 
WSL 02.05.22. 

Rates vary with 
hour and day.  

Emission factor 0.101 
kg CO2e/kWh for 

purchased grid-
average electricity 
(Ministry for the 

Environment, 2022)  



Diesel 

engine 

Diesel consumption is a 

manual input from Rosedale 
Chemical Stocktake monthly 
reporting. 

Diesel ($/L) Diesel emission factor 

2.66 kg CO2e/L 
(Ministry for the 
Environment, 2022) 

Biosolids 
disposal  

Biosolids production calculated 
from digested sludge storage 

tank % solids and Centrifuge 
feed flowrate from SCADA.  

Assumed a 95% solids 
capture rate in centrifuge.  

Biosolids 
disposal & 

transport 
($/wet tonne)  

Assume 0.027 kg 
CH4/kg TS disposed at 

landfill (Andrews, J 
2021). 

Solids transport 
emissions not included 
in GHG baseline  

Grit and 
screening 

disposal  

Grit and screening load 
manually calculated from 

Watercare monthly reporting 
of biosolids removal. 

Reporting based on contractor 
invoices.  

Grit and 
screening 

disposal & 
transport 

($/wet tonne) 

N/A 

Process 
Emissions 
from MLE 

reactors  

MLE, CH4 & N2O emissions 
from online biological model. 
Model results to be validated 

during N2O monitoring 
campaign.  

N/A CO2e Conversion 
factors: 

28 kg CO2e/kg CH4 

298 kg CO2e/ kg N2O  

Digester 

emissions 

Total digester methane 

production calculated from 
SCADA - Digester 1,2,3 & 4 

Gas production and CH4%. 

N/A Fugitive emissions 

factor 0.0141 – 
assume a high-quality 

biogas digester low 
quality gas storage in a 
cool climate (Andrews, 

J 2021). 

Emissions 

from flare 

Volume of biogas flared 

calculated from SCADA - 
Volume gas flared and 

digester CH4 % 

N/A Assume 98% 

destruction of CH4 from 
flaring (Andrews, J 

2021). 

Discharge to 

ocean 

Effluent BOD and TN load 

calculated from SCADA.  

N/A N2O and CH4 emissions 

based on emission 
factors from effluent 
discharge to water 

bodies (Andrews, J 
2021). 

Labour & 
sampling 

Labour based on annual 
salaries of the following full 

time equivalent roles: 5x 
Process controllers, 6x 

Labour and 
sampling split 

across process 
area - defined 

N/A 



process operators, 3x plant 

operators and a % of 
operations management. 

Solids and liquid sampling 

costs for 2021/22 from WSL 
reporting.    

by WSL 

operations 
manager. 
Assume even 

split of cost 
across the 

year. 

Maintenance Maintenance data based on 

historic Infor maintenance 
records. Records define 
equipment cost, work cost and 

type e.g., corrective or 
preventative.  

Process area 

derived from 
maintenance 
records. 

Assume even 
split across the 

year.  

N/A 

 

THE ROSEDALE BIOWIN MODEL  

BioWin is a wastewater treatment process simulator that ties together biological, 
chemical, and physical process models. BioWin is created by EnviroSim Limited 
and used world-wide to design, upgrade, and optimise wastewater treatment 

plants. 

A core component of the Rosedale Digital Twin is a live Biowin Model. The BioWin 

model was operationalised with an application programming interface (API) 
developed between Moata and BioWin to push/pull plant data and model results. 
The existing BioWin model was developed pre-2020 for the design upgrade and 

has known issues around the mass balance. Where plant data was not available 
the Biowin model outputs have been used for the GHG dashboards. A well-

calibrated model is crucial for the accuracy of these results and at the time of 
publishing this paper there are ongoing efforts to improve calibration, including 
an intensive sampling survey being carried out in August 2022.  

DISCUSSION 

Extracts of the operational dashboards are shown in Figure 2, Figure 3 and Figure 

4 below. 

 

 

 

 

 

 

 



Figure 2: Daily GHG emissions per process area 

 

 

Figure 3: GHG by process area and weekly trends 

 

 

 

  



Figure 4: Opex values by category and weekly trends 

 

The core objective of the dashboards was to identify the hot spots across the 

WWTP. Process emissions has been highlighted as the major contributor to GHG 

emissions, contributing 94% of the total GHG. Based on the operational Biowin 

model 57% is produced in the MLE reactors with 37% occurring at the landfill 

where the solids are taken. In 2019 the Intergovernmental Panel on Climate 

Change (IPCC, 2019) published guidelines including recommendations on GHG 

inventory methods. This highlighted the need to include facility-level data in 

inventories. To verify the modelled results and broad emissions factors, a N2O 

monitoring campaign is underway at the Rosedale WWTP.  

One of the challenges faced when developing the dashboards was the input data 

quality. Multiple SCADA data input streams had issues with completeness and 

accuracy. To generate the reports data cleaning was applied, for example 

excluding negative values and forward filling data where none was available. 

Further investigation into the input data quality would improve the robustness of 

the dashboards.  

CONCLUSION 

GREENHOUSE GAS EMISSIONS 

The purpose of the operational dashboards is to identify hotspots of GHG and Opex 
production, and to monitor the impacts of control strategies. Initial results indicate 

that process emissions from the MLE contribute 57% of the overall WWTP GHG 
emissions, and ~90% of the onsite GHG emissions (if landfill emissions form solids 

disposal are excluded).  

These results will be validated with actual GHG N2O monitoring data once this is 
available. These results reinforce the need to better understand process emissions 

and develop and trial control strategies. The GHG dashboards indicate ~100 



tonnes CO2e is produced from MLE process emissions per week. This equates to 
$442,000 per year in carbon credits (at current spot rates of ~$85/TCO2e).  

OPERATIONAL COST 

The opex dashboards indicate solids disposal as a major operational cost – 

contributing approximately 25% of total opex. Solids disposal costs include 
transport and disposal for biosolids, screening and grit. The volume of Biosolids 
produced is calculated from centrifuge SCADA data (% solids and feed flowrate) 

and multiplied by an annual rate for transport and disposal. The production of 
biosolids has been highlighted as an area that could be further optimized for cost 

and emissions. A factor of 0.027 kg CH4/kg TS has been used for biosolids disposed 
at landfill – resulting in Biosolids contributing 37% of total emissions.  

It is important to consider the interrelationships between effluent quality, GHG 

emissions and Opex. By creating dashboards which include both GHG and Opex 
we can identify relationships and monitor trends of both values when trialling 

control strategies. This will be pertinent for the MLEs where aeration has a 
significant impact on both MLE Opex (10% of the total plant Opex) and N2O 
production (57% of GHG emissions).  

AMPLIFICATION ACTIONS 

The dashboards developed through this study have enabled the Rosedale team to 

identify target areas, trial control strategies and monitor results. This was made 
possible by the combination of connected plant data, online process calculations, 

biological modelling, and clear visual representation. The key focus is now on 
obtaining a comprehensive set of data for N2O, verifying the model, and trialing 
reduction strategies.  

 

WORKSTREAM 2 – SOFT SENSORS FOR DRIFT DETECTION 

PROBLEM STATEMENT  

Accurate, reliable data on plant parameters is critical for improving and optimizing 
plant performance. This includes the development of reliable, effective digital tools 
as described in Workstream 1.  

Unreliable plant instrumentation is a universal experienced at treatment plants. 
This can be attributed to multiple reasons - one of which being sensor drift, where 

instruments increase or decrease over time. This can be difficult for operators to 
identify visually due to the gradual gradient and similarities to actual plant upsets. 

The objective of this workstream is to develop soft ‘virtual’ sensors of plant 

parameters to identify sensor drift events. Operators are alerted to sensor drift 
event as they occur and can then calibrate, clean or replace the sensor, improving 

the quality of data captured.  

METHODOLOGY  

The following steps were followed to develop the soft sensors:  



1. Data Analysis 
a. Historic sensor data was reviewed alongside maintenance records to 

identify historic drift events  
b. Engage with instrument technicians and plant operators to 

understand general sensor quality.  
c. Data cleansing to remove anomalies and spikes from standard 

activities e.g., cleaning.  

2. Model development  
a. Determine appropriate model type e.g., Machine learning model, 

biological model, process logic. Model selection is discussed further 
below.  

b. Identify model inputs through engagement with process engineers 

and plant operators 
c. Develop / train based on historic data  

d. Deploy soft sensor connected to SCADA data.  
3. Drift Detection  

a. Calculate rolling-average period for physical sensor and soft sensor. 

Period to be determined based on nature of parameter.  
b. Monitor deviation between physical sensor and soft sensor rolling 

averages 
c. Determine threshold for sensor drift. The threshold value was initially 

identified experimentally by comparing the results of a large number 
of parameters on historical data in order to find values that resulted 
in the best detection performance. 

d. Apply wet weather exceptions to prevent alarming due to the impact 
of increased flows. 

4. Performance monitoring  
a. Configure email and/or text alerts to operators when a threshold is 

exceeded  

b. Review sensor and capture feedback – e.g. correctly identified drift, 
false positive, false negative.  

c. Adjust configuration if required  

DISCUSSION  

The soft sensors were developed using a range of modelling techniques including 
mechanistic biological models and data driven machine learning models. An 
overview on how each soft sensor was developed and comparison of modeling 

techniques is discussed below. Error! Reference source not found.2 provides 
an overview of the models used for each soft sensor and contributing factors. 

 

 

 

 

 

 



Table 2: Soft sensor modelling approach overview  

 

 

BIOLOGICAL MODEL – AMMONIA SOFT SENSOR  

The biological (BioWin) model is a mechanistic model which determines plant 
values based on the chemical and biological reactions occurring in the treatment 

plant. Significant effort is required to calibrate a biological model – including 
comprehensive plant-wide sampling data and expert process knowledge. Once 

calibrated a biological model can be used to virtually trial control strategies and 
interventions.  

Parameter Ammonia Suspended solids, 

Nitrite, Nitrate 

Dissolved Oxygen 

Model Type BioWin model Machine Learning 

model  

Statistical model  

Reason The BioWin model 

was already 
calibrated for 
ammonia & historic 

ammonia probe data 
was poor quality so 

machine learning 
wasn’t a valid 
option.  

 

The BioWin model 

was not calibrated 
for the parameters. 
Probe and/or 

sampling data was 
available to train the 

models. 

DO operates at a 

defined set point. The 
relationship between 
the valve position and 

DO can indicate if the 
probe is fouling. A 

statistical model was 
used to monitor this 
relationship.  

Location Combined MLE 

outlet 

Combined MLE outlet MLEs 1,2,3 & 4 

Alarm 

Configuration 

The difference 

between probe & 
soft sensor 2-day 

moving averages 
was monitored. A 
filter was applied to 

exclude alarms 
during high rainfall 

periods.   

The difference 

between the probe & 
soft sensor 6-day 

moving averages 
was monitored. Filter 
applied to exclude 

probe anomalies. 

Threshold limit based 

on relationship 
between valve 

position % and DO 
probe value. 



The Ammonia soft sensor is generated from a biological model. The biological 
model inputs influent data to calculate the expected ammonia concentration in the 

reactors.  

Figure 5: Ammonia soft sensor generated from biological model 

  

During rainfall events the model inputs influent flow, rainfall and a fixed ammonia 

diurnal load profile to determine the approximate influent concentration. The 
digital twin has been configured to assume increased flow attributed to increased 

rainfall is dilute and does not contain additional load. This does not account for 
first flush phenomenon where a short ammonia peak occurs with the initial flow 
increase. This causes a limitation in the ammonia soft sensor, where the 

concentration is not representative during the initial rainfall. Increasing the 
quantity of influent load data captured would improve the accuracy of the soft 

sensor during wet weather events.  

MACHINE LEARNING MODEL – NITRITE, NITRATE AND TSS SOFT SENSOR  

The machine learning (ML) models used a Temporal Convolutional Neural Network 
(TCN) model. This is a highly effective algorithm for time series data and can 
automatically identify complex relationships in the input data and output data that 

increase predictive performance (Bai, 2018). 

ML soft sensors were developed for Suspended Solids, Nitrite and Nitrate. By 

combining process engineering and data science knowledge the team were able 
to identify key patterns and features for each quality parameter. For example, the 
process engineer would identify typical parameters that impact TSS (WAS, 

flowrate, and load) and the data scientist would train the model based on the 
features that best predicted the data.  

For some traces the probe data was clearly offset from the laboratory sampled 
data in the training period. In order to make this data usable, the training data 
was adjusted by subtracting the difference between the moving averages of the 

probe and sampled data. This adjusted training data was then used to train the 
model. The difference between the probes is not used in the prediction process. 



By training the model on previous probe readings, fit to the trend of the sample 
data (taking an aggregated window on the lab-sampled data to eliminate noise) it 

was possible to get the best of both worlds: the short-term patterns modelled 
from the probe (modelling the diurnal behaviour); and the trend of the lab data. 

This trend is considered more trustworthy as the lab process is less likely to suffer 
from gradual drift than the online sensor. 

As a result, the output looks somewhat like the real probe readings, but with the 

trend sitting closer to the laboratory samples, which were taken to be the true 
value. 

Figure 6: TSS soft sensor generated from ML model 

 

STATISTICAL MODEL – DISSOLVED OXYGEN SOFT SENSOR  

The performance of the MLEs bioreactors is heavily influenced by the levels of 
dissolved oxygen (DO) in the tanks. The Rosedale MLEs are controlled to a DO 

setpoint, meaning that the plant will adjust airflow into the MLE cells based on DO 
probe values to maintain a target level. 

A statistical model was used to determine Dissolved Oxygen probe sensor drift, 
through monitoring the relationship between DO and valve position to identify 
drift.  

DO drift events identified by plant operators are short term phenomena, defined 
as: DO probe drifts, the air flow and air valve position adjust to maintain the DO 

set-point, DO probe value remains constant even though probe is incorrect, the 
DO and air flow are much higher than required.  

To identify these events the relationship between the air control valve position 

and DO probe rolling averages were monitored. Where the % of valve position 
opening doesn't cause the DO value to increase as it had previously, an alarm is 

raised.   

 



Figure 7: Drift detection at MLE 4 Zone B1  

  

Drift detection alerts have been deployed at 16 DO probe across MLE 1,2,3 and 4. 

CONCLUSION  

The use of soft sensors for drift detection has been demonstrated through the 
Rosedale innovation programme.  

At the time of publishing this paper there are 20 operational soft sensors alerts at 
Rosedale WWTP. The performance and accuracy of the sensors are continuously 
monitored, with the Rosedale operational team responding to alarms and feeding 

back to the Moata data science team.  

The continuous recording of drift alerts and outcomes e.g. true positive, false 

positive, or false negative, will support the verification of the soft sensors. A 
potential benefit of successful soft sensors is reduced reliance on physical 
sampling and probes. Long-term performance monitoring will build confidence in 

soft sensor reliability and open opportunity for further application.  

When scaling to other plants or parameters, a decision between a mechanistic 

approach using a biological model or a data driven machine learning approach will 
be required.  

As discussed above, a biological model requires significant upfront investment for 
calibration and relies on quality accurate influent flow and load data. While a 
machine learning model is faster and cheaper to deploy, it is not able to support 

trialling asset management scenarios.  

Rosedale results comparing the two techniques indicate ML models can generate 

more accurate soft sensors, although the model is reliant on representative 
training data. As the model learns relationships from historic data, an operational 
change in the plant will not be immediately reflected in the model.  



The decision between techniques therefore is dependent on whether there is an 
existing calibrated biological model, the availability of online flow and load influent 

data, and the availability of historic training data sets.  

Soft sensors have the potential to significantly improve plant data quality, either 

through improved sensor maintenance or reducing reliance or unreliable sensors. 
Plant control systems and operators rely on probe data to control processes. It is 
therefore critical for any plant optimisation that this data is accurate and reliable. 

It is also fundamental for digital solutions, such as the GHG and opex dashboards 
developed in workstream 1.  

For example, DO is a key parameter in the production of N2O – too high or too 
low, depending on the metabolic conditions, and the risk of production increases. 
It is also a major contributor to opex through energy consumption, approximately 

$25,000 per week. DO probes are typically unreliable and intensive to maintain - 
the DO sensor drift alerts will improve the quality of data.  

CONCLUSIONS  

The two workstreams in Watercare’s 2022 Rosedale innovation programme 

involved the creation of real time operational dashboards for GHG and Opex for 
the entire Rosedale WWTP, and the implementation of a soft sensor and drift 

detection programme for a number of key sensors in the MLEs. 

The operational dashboards revealed hotspots for GHG and Opex in the Rosedale 
WWTP. The MLEs were identified as a hotspot contributing approximately 50% of 

the overall WWTP GHG emissions. The other major operational GHG contribution 
identified was the biosolids disposal which contribute approximately 40% of the 

overall GHG emissions for the plant. These two areas together represent the vast 
majority of the process emissions so it is clear that any mitigation strategies 

should be focused there.  The opex dashboards also indicate that biosolids disposal 
is a major operational cost, representing 25% of total opex. 

A variety of techniques were trialled as part of the soft sensor workstream: 

biological models, machine learning models, and statistical models. As outlined, 
different situations require different techniques, with a biological model being the 

best solution when a well calibrated model already exists, and a machine learning 
model being a faster and cheaper solution than calibrating a biological model when 
quality training data is available. 

It has been shown that soft sensors have great potential for improving plant 
data quality by either improving sensor maintenance routines or reducing 

reliance on unreliable sensors. High quality data is crucial both for operational 
purposes such as controlling the WWTP, and for strategic analysis such as the 
operational dashboards created in the GHG and Opex workstream. Soft sensors 

therefore will play an important role in the future of waste water treatment. 
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