

Presented by Tim Preston (Wellington 16/3/2023)

Introduction

- What does Chch Citywide modelling look like?
- Updates and enhancements V2.0
- Model runs and large scale
- Section 2018 Post processing deliverables
- Lessons learned
- S Finding faults
- Future ideas
- S Conclusions and acknowledgements
- Questions

Avon "Citywide Modelling"

- BHIv2020 Mike Flood 3-way coupled
- Rain on mesh, HIRDSv4, 70% triangular shape
- I39 km², 1.8M triangles, 12m² minimum cell size
- M21 constant infiltration with capacity
- Road centrelines and gutters to 15022 sumps
 Aligned Action 1998
 AlignedAction 1998
 Aligned Action 1998
 AlignedAction 1998
- 358km of urban pipes (11897 links)
- I3 pump stations (mainly MU, 2 M11)
- I56km of rivers (8814 computational points)
- S Tidal stopbanks, estuary, open ocean boundary

Updates and enhancements

- Lidar 2018
 - Substantial customisations for road surfaces and other key features like stopbanks and basins
- M21 constant infiltration with capacity
 - Replaced distributed Hortons, const infiltration 75% like final Hortons infiltration, immediate calibration match
- Solution 2020 satellite impervious data
 - Modified (focused) impervious on road surface extents

Updates – Future Impervious

Future impervious

- Calculated in tabular lines 'per each meshblock'
- Existing impervious (satellite 10m raster) and zonings
- Forecast household numbers to 2041 and population to 2068
- Related zoning types to typical impervious for full development
- Commercial zoning assumption of linear development to 90% imperv by 2068 (noting most areas are already near 90% imperv anyway)
- Roads and redzone remain fixed at current impervious
- All other areas (nominally 'residential' but that includes a lot of other zoning),
 - characterise each meshblock as % developed (% brownfields) and
 - characterise the change in impervious for greenfield areas
 - characterise the change in impervious for brownfield areas
- Result is written as a factored adjustment to existing raster level impervious detail

Updates – Future Impervious

- Solution Calculated in tabular lines 'per each meshblock'
- S Existing impervious (satellite 10m raster) and zonings
- Sources Forecast household numbers to 2041 and population to 2068
- Related zoning types to typical impervious for full development
- Commercial zoning assumption of linear development to 90% imperv by 2068 (noting most areas are already near 90% imperv anyway)
- Roads and redzone remain fixed at current impervious
- Ill other areas (nominally 'residential' but that includes a lot of other zoning),
 - each meshblock as % developed (% brownfields) and
 - change in impervious for development of greenfield areas
 - change in impervious for development of brownfield areas
- Result as a factored adjustment to existing raster level impervious detail

Updates - Infrastructure

- © Cranford Basin Active Management
 - Winters Basin then new Cranford Basin
 - Buller Stream water level sensor (M11+MU)
 - M11 Winters active controlled gate (closed on high level in Buller Stream)

Cranford

Buller's stream

Modelling Group

Dudley diversion

control gate

GHI

- MU Cranford PS219 (controlled by local level and Buller Stream)
- Source Dudley Diversion
 - Stream realignment and right bank intake screen, 800m of 4x2m box culvert
- Solution New Tay St pump station (2m³/s)
 - And associated drainage network modifications to suit
- Stopbank Asbuilt top levels
- Upgraded Horseshoe lake pump station (14m³/s)
 - Screw extension for king tide capacity

Mod	Batch	Run Scenarios	Project Scenario Parameters								Dominant Rain/Tide ARI			
			Rainfall/Tide Pairing	Storm durations	Development	Ground water %th	Sea Level Rise	Rainfall Climate Change	Stopbank	FutureEQ	10ARI	50ARI	200ARI	500ARI
 IT Sce 4 ARI: • 	1	2020	Joint Probability	Odd	2020	85 th	+ 0.00m	0%	Down	noEQ	Yes	Yes	Yes*	n/a
	2	2020		Odd	2020	85 th	+ 0.00m	0%	Up	noEQ	Yes*	Yes*	Yes	n/a
	3	2030+		Odd	2030	85 th	+ 0.19m	Jacob	Down	noEQ	Yes	Yes	Yes	n/a
	4	2030+		Odd	2030	85 th	+ 0.19m	Jacob	Up	noEQ	Yes	Yes	Yes	n/a
	5	2060+		Odd	2068	85 th	+ 0.45m	Jacob	Down	noEQ	Yes	Yes	Yes	n/a
	6	2060+		Odd	2068	85 th	+ 0.45m	Jacob	Up	noEQ	Yes*	Yes*	Yes	n/a
	7	2100+		Odd	2068	85 th	+ 1.06m	Jacob	Down	noEQ	Yes	Yes	Yes	n/a
	8	2150+		Odd	2068	85 th	+ 1.88m	Jacob	Down	noEQ	Yes	Yes	Yes	n/a
	9	2150++		Odd	2068	85 th	+ 2.40m	Jacob	Down	noEQ	Yes	Yes	Yes	n/a
	10	2060+		Odd	2068	85 th	+ 0.45m	Jacob	Up	FutureEQ	Yes	Yes	Yes	n/a
🐵 4-6 Ri	11	2060+		Odd	2068	85 th	+ 0.45m	Jacob	Down	FutureEQ	Yes	Yes	Yes	n/a
	12	2100+		Odd	2068	85 th	+ 1.06m	Jacob	Down	FutureEQ	Yes	Yes	Yes	n/a
	13	Sensitivity test (2100+)		Odd	2068	85 th	+ 1.06m	Jacob	Down	noEQ	Yes	Yes	Yes	n/a
	14	DistrictPlan Future	Plan e Plan nt Plan e Plan e	Even	2068	85 th	+1.00m	16%	Down	noEQ	n/a	n/a	Yes*	n/a
	15	DistrictPlan Current		Even	2020	50 th	+ 0.00m	0%	Down	noEQ	n/a	n/a	n/a	Yes*
	16	DistrictPlan Future		Even	2068	85 th	+0.50m	Jacob	Down	noEQ	n/a	n/a	n/a	Yes*
	17	DistrictPlan Future		Even	2068	85 th	+1.00m	Jacob	Down	noEQ	n/a	n/a	n/a	Yes*

Run management

- Sive dedicated computers
 - S Typical HP Z640, 64Gb, 2x GeForce GTX 980 Ti GPUs
- S XLS tabulated run parameters (210 lines)
- S PY Python scripted generation of model setups
- BAT Prediction of computational efforts, load balancing to batching
 - Most computers ran two parallel jobs, hence eight batches
 - S,150 hrs; 26 ideal calendar days; plus rework
- SVBA Run progress monitoring
 - restart crashed runs
 - rebalance computational loads
- I00% run completion
 - including 56 re-runs to achieve

Post processing deliverables

- Full runtime results
 - M21, M11, MU (600 Gb deliverables)
- Integrated floodplain and river result rasters
 - Imax of run and max of max
 - ${\ensuremath{{\,\otimes }\,}}$ depth, level and critical duration
- ID points max of run and max of max, depth, level and critical duration
 - MU+M11 computational points
 - S max of run and max of max, depth, level and critical duration
 - 6 43 GIS point datasets for each of the scenario batches
- M21 stability oscillations summary
 - 6 43 GIS polygon datasets for each of the scenario batches

Modelling Symposium 2023

GHD

Reports generated

- Mass balance error corrections and validation
- Stormwater Infrastructure Change Analysis
- RORB Integrated Model Build Report
- S LDRP097 Multihazard baseline modelling
- Avon model sensitivity to rainfall and groundwater level
- Solution Sensitivity
 Solution Sensitivity
- Citywide Model Schematisation 2020Update Report
- S Avon Model Status Report
- LDRP097 Multi Hazard Baseline Modelling

Lessons learned - Blockouts

- Continuous blockouts for short culverts
- Good generally but these 'blocked' the road surfaces as flow paths
- Sometimes this was important to flood levels
- Approach now to find and join up the mesh

Lessons – Major lateral flows

- Subscription Lateral linked flows connect the floodplain into & out of rivers
- Sinite capacity and flow constraints to aid stability
- Unsatisfactory results where lateral flows are large

Fault finding – high slopes

- Filter floodplain `noise'
- Solution Floodplain centroid points and river points interpolated to raster
- River points separately to thiessen polygon raster burned over
- Trend levels (100m radius averaging focal statistics)
- Solution Data minus trend (flat anomalies from trend)
- Search radius, max minus min

Future ideas

- Bridge the important mesh gaps
- Sefinement, automation and integration of fault finding
- S Faults summary across large batches to prioritise remediation
- Improved lateral linking performance
- Improved mesh generation to reduce buffer erasure of conflicting features
- Improved railway embankment modelling top levels, permeable ballast
- Reconsider Rorb for hillside hydrology

Conclusions Acknowledgements

- Big detail, big data
- Ilan, do, observe, learn
- Still learning and learning how to observe better
- Thanks to CCC
 - S Helen Beaumont, Kevin McDonald, Jo Golden

Thank you! Questions? Patai?

