

Climate change: moving the target for wastewater overflows

Presented by Manu Ward, Hydraulic Analysis Ltd with Trevor Carey-Smith, NIWA

Moving the target for wastewater overflows

• Key question: how should we assess wastewater performance under future climate conditions?

• Background:

- wastewater network performance
- climate change and "long time series" rainfall
- How to "move the target"?
- Problems with HIRDS (annual maxima)
- Reworking with monthly maxima (for sub-annual ARIs)
- Resulting tables

Modelling Symposium 2023

Modelling Group

Cyclone Gabrielle approaches Wellington (Stuff / Bruce Mackay

Wastewater network performance

Four categories of common issues...

Modelling Symposium 2023

Modelling Group

ieoaraphic

water

Types of wet weather overflow

Controlled overflow points

PS36 Island bay

PS38 Owhiro Bay

Types of wet weather overflow

- Controlled overflow points
- Uncontrolled overflows

Sources of wastewater

HYDRAULIC ANALYSIS

LIMITED

Modelling Symposium 2023

Modelling Group

Water

Design storms

Design storms useful for debugging models. Rainfall ARI is not related to overflow ARI. Antecedent conditions impact performance.

Design storms not used for reporting performance targets

water

NEW ZEALAND

Overflow performance

Spills frequency varies with rainfall.

To estimate average spill frequency, need a length of record 6x ARI.

A well-calibrated model is the most reliable way to assess average performance.

Overflow performance

Overflow performance

Future performance a function of

- Population growth
- Network changes in RDII
- Climate change

Alternative approaches

- Ideally obtain a "future" rainfall time series
 - Complex and expensive
 - Temporal downscaling of global climate models and/or extensive climate modelling at local scale
- OR use "historic" rainfall, and just adjust the target

Can we use HIRDS?

ocation				Site Informat	ion
Address search Enter you	r address and press enter to Site ID: Site Name: Data Source:	search	E14272 STON KELBURN Cliffo.niwa.co.nz	To generate or a new loo Report butt	a set of results, either click on an existing data po cation and enter a site name, then press the Genera on,
Makara	Rainfall records u Daily Coverage:	sed for different event durat	tions: 928-2004 (77vrs)	Latitude	
	Sub-Daily Covera Sub-Hourly Covera Sub-Hourly Covera	ge: 1 rage: 1	928-2004 (77yrs) 928-2004 (77yrs)	Longitude	
	VOLING N		J	Site Name	
	Brooklyn			Site Id	E14272
		3 Stat		Output Table Depth - Dur Intensity - E Generate Re	e Format ration - Frequency Duration - Frequency port
esults					Spreadsheet Downloa
Site Details Histor D	ata RCP2.6 Scenario	RCP4.5 Scenario	RCP6.0 Scenario	RCP8.5 Scenario	
Site Details			<u>u</u>		
Site Name: WELLINGTON K	ELBURN				
Site Id: E14272					
Coordinate System: NZGD19	949				

Can we use HIRDS? spoiler alert: "no"

													Abo
cation								Sit	te Informati	on			
Address s	earch Enter	r your address	s and press en Site ID: Site Name: Data Sourc	ter to search e:	WELLIN	E142 NGTON KELBU cliflo.niwa.co	272 RN Sites		To generate or a new loc Report butto	a set of resul ation and ent on.	ts, either clic er a site nam	ck on an exis	sting data point, as the Generate
	Mak	ara-	Location: Rainfall rec	ords used for di	fferent event dur	174.767, -41.2 ations:	286 (1) (ma) (000		Latitude				
	MAN STAN	224	Sub-Daily Cover	Coverage: Coverage:		1928-2004 (77) 1928-2004 (77)	yrs) yrs)		Longitude				
	ALL ALL			N		a. "			Site Name				
	4-101	EAE/	Brooklyr			1							
	3		Bookly	n Contraction Newtown		athmore	٥	0. @	Site Id utput Table Depth - Dur Intensity - D Generate Rej	E14272 Format ation - Freque uration - Freque port	ency quency		
sults	9		Brokly	n eliti Novioun 2			٥	01 @ 	Site Id utput Table Depth - Dur Intensity - D Generate Rep	E14272 • Format ation - Freque uration - Freque port	ency quency	Spreadshe	et Download
sults Bite Detai	Is Historia	cal Data	Broklyn RCP2.6 Scena	n Contraction of the second se	4.5 Scenario	RCP6.C	0 Scenario	OL @ C RCP8.5 S	Site Id utput Table Depth - Dur Intensity - D Generate Rep	E14272 Format ation - Frequer uration - Frequer port	ancy juency {	Spreadshe	et Download
sults Site Detai Rainfall	Is Historia depths (mm	cal Data I	Brooklyn RCP2.6 Scena for the period	Newtown Newtown rio RCP- od 2031-20	4.5 Scenario 50	RCP6.C) Scenario	OL (RCP8.5 S	Site Id utput Table Depth - Dur: Intensity - D Generate Rep	E14272 Format ation - Freque uration - Frec	ancy quency	Spreadshe	et Download 🔹
sults Site Detai Rainfall ARI	Is Historia depths (mm AEP	cal Data I n) :: RCP8.5 10m	RCP2.6 Scena for the perior 20m	no RCP rio RCP od 2031-20 30m	4.5 Scenario 50 1h	RCP6.C	D Scenario 6h	01 () () () () () () () () () ()	Site Id utput Table Depth - Dur Intensity - D Generate Rep Scenario	E14272 Format ation - Frequeuration - Free poort	ancy quency 72h	Spreadshe 96h	et Download i
suits Site Detai Rainfall ARI 1.58	IIS Historia depths (mm AEP 0.633	cal Data I o) :: RCP8.5 10m 7.04	Brookly RCP2.6 Scena for the perior 20m 10.0	Newtown Newtown rio RCP od 2031-20 30m 12.4	4.5 Scenario 50 17.7	RCP6.0 25.0	D Scenario Ch 41.5	01 () () () () () () () () () ()	Site Id utput Table Depth - Dur. Intensity - D Generate Rep Scenario 24h 71.4	E14272 Format ation - Freque uration - Freque sort 48h 88.7	ancy quency 72h 98.5	Spreadshe 96h 105	et Download • 120h 110

HIRDS v4 for Karori Reservoir - Projected for RCP8.5 2081-2100

······· Log. (10m) ······· Log. (20m) ······· Log. (30m) ······· Log. (1h) ······ Log. (2h) ······ Log. (6h) ······ Log. (12h) ······ Log. (24h)

HYDRAULIC

ANALYSIS LIMITED

..... Log. (10m) Log. (20m) Log. (30m) Log. (1h) Log. (2h) Log. (6h) Log. (12h) Log. (24h)

HYDRAULIC

ANALYSIS LIMITED

Modelling Group

NIWA review of method (Trevor Carey-Smith)

- What's wrong with this?
- HIRDS is tailored to extreme events (eg >10yr ARI).
- It is based on *annual* maxima.
- The HIRDS definition of ARI:
 - The average recurrence interval *between years* containing at least one event.
 - We can call this ARI_{y}
- Common definition of ARI:
 - The average recurrence interval *between events*
 - We can call this ARI_e

A statistics refresher

- Annual Exceedance Probability = AEP (probability that a certain value will be exceeded in a year).
- $ARI_y = 1/AEP$
- By definition ARI_y always > 1 (i.e. it only reaches 1 when AEP=1: we are 100% sure that the event will occur every year).

A statistics refresher

• Meanwhile, for ARI between *events*:

•
$$ARI_e = -\frac{1}{\ln(1-AEP)}$$

• The two definitions can be related like this:

•
$$ARI_e = -\frac{1}{\ln\left(1 - \frac{1}{ARI_y}\right)}$$

- Note that when $ARI_{y} = 1.58$ years (the lowest return period provided in HIRDS), $ARI_{e} = 1$ year.
- For AEP>10% (i.e. "10 year event"), ARI_v and ARI_e are very similar.

A statistics refresher

- Recommended "event frequency descriptor terminology" from Australian Rainfall and Runoff.
- EY: exceedences per year
- AEP (% probablity)
- AEP (1 in x probability) *i.e.* HIRDS ARI_y
- ARI (Average Recurrence Interval)

Back to our moving target method

- The general idea is fine (says NIWA).
- The problem is using HIRDS to extrapolate to sub-annual frequencies.
- To do this, we first need to convert ARI_v to ARI_e

HIRDS v4 for Karori Reservoir - Historic Data

······· Log. (10m) ······· Log. (20m) ······· Log. (30m) ······· Log. (1h) ······ Log. (2h) ······ Log. (6h) ······ Log. (12h) ······ Log. (24h)

HIRDS v4 for Karori Reservoir - Historic Data

······· Log. (10m) ······ Log. (20m) ······· Log. (30m) ······ Log. (1h) ······ Log. (2h) ····· Log. (6h) ····· Log. (12h) ······ Log. (24h)

NIWA's solution

- Don't use HIRDS at all.
- For the selected rain gauges, extract "monthly maxima" (as opposed to the "annual maxima" series that HIRDS is based on)
- This will be better suited for assessing sub-annual frequencies.

NIWA's solution

Annual maxima series (Hutt at Birch Lane) for 1hr duration plotted on a reduced Gumbel variate

NIWA's solution

Annual maxima series (Hutt at Birch Lane) for 1hr duration plotted on a reduced Gumbel variate

Monthly Exceedance Probability (%) 50 1 0.7 0.3 70 30 20 70 **Smaller error bands** 60 (higher sample size 50 1 hr Rainfall Depth for small ARIs) 40 30 20 10 Hutt at Birch Lane 0 Sample GEV fit **RCP8.5** 0.2 5 10 20 50 100 200 500 T-month Return Period (between events) 1.32 yr ARle Monthly maxima series (16 month)

- Similar approach as used for HIRDS v4.
 - Six global climate models downscaled to provide hourly rainfall from 1970-2100, at 27km resolution, for four representative concentration pathways (RCP2.6, 4.5, 6.0 and 8.5)
- But assessed at monthly scale
 - For each 0.1°C temperature anomaly, ARI assessment of monthly maxima (for each duration).
 - Linear trend fitted to obtain "change in rainfall depth per degree of warming" for each ARI/duration.

6 Month Return Period

 As for HIRDS, median adjustment from all grid points adopted to represent all NZ

Temperature Anomaly

Warming has more impact on higher return periods, and shorter durations

Factors adopted in **HIRDS**

Table 3:New Zealand land-average temperature increase relative to 1986—2005 for four futureemissions scenarios.The three 21st century projections result from the average of six RCM model simulations(driven by different global climate models).The early 22nd century projections are based only on the subset ofmodels that were available and so should be used with caution.After Table 8 in Carey-Smith et al. (2018).

	2031-2050	2056-2075	2081-2100	2101-2120
RCP 2.6	0.59	0.67	0.59	0.59 (4 model avg)
RCP 4.5	0.74	1.05	1.21	1.44 (5 model avg)
RCP 6.0	0.68	1.16	1.63	2.31 (CESM1-CAM5 only)
RCP 8.5	0.85	1.65	2.58	3.13 (3 model avg)
	Î	Î		
	War	ming for	various	
	time	horizon	5	

Monthly maxima series (Hutt at Birch Lane) for 1hr duration plotted on a reduced Gumbel variate

Monthly maxima series (Hutt at Birch Lane) for 1hr duration plotted on a reduced Gumbel variate

12-month Return Period: RCP8.5 2080-2100

Duration

12-month Return Period: RCP8.5 2080-2100

Duration

12-month Return Period: RCP8.5 2080-2100

Duration

months for a range of expected return periods during different emissions scenarios and future time periods Select duration appropriate to catchment

Table 4:

	Target			Equivale	nt Current C	limate Retu	rn Period		
Duration	Return		2031	-2050			2081	-2100	
	Period	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCP2.6	RCP4.5	RCP6.0	RCP8.5
10 min	3	3.5	3.7	3.6	3.8	3.5	4.2	4.7	6.0
20 min	3	3.6	3.7	3.7	3.8	3.6	4.3	4.8	6.2
30 min	3	3.6	3.7	3.7	3.9	3.6	4.3	4.9	6.3
1 hr	3	3.6	3.8	3.7	3.9	3.6	4.4	4.9	6.5
2 hr	3	3.6	3.8	3.7	3.9	3.6	4.3	4.9	6.5
6 hr	3	3.4	3.6	3.5	3.7	3.4	4.0	4.4	5.4
12 hr	3	3.3	3.4	3.4	3.5	3.3	3.7	4.0	4.7
24 hr	3	3.2	3.3	3.3	3.4	3.2	3.5	3.7	4.2
10 min	6	7.3	7.7	7.6	8.0	7.3	9.0	10	14
20 min	6	7.4	7.8	7.7	8.1	7.4	9.2	11	15
30 min	6	7.5	7.9	7.7	8.2	7.5	9.3	11	15
1 hr	6	7.5	8.0	7.8	8.3	7.5	9.5	11	16
2 hr	6	7.5	8.0	7.8	8.3	7.5	9.6	11	16
6 hr	6	7.2	7.5	7.4	7.8	7.2	8.7	9.9	13
12 hr	6	6.9	7.2	7.1	7.4	6.9	8.1	9.0	11
24 hr	6	6.7	6.9	6.8	7.1	6.7	7.6	8.2	9.8

Wellington Regional average equivalent current climate return. Return periods shown in

Table 4:Wellington Regional average equivalent current climate return.Return periods shown inmonths for a range of expected return periods during different emissions scenarios and future time periods

Salact	months for a range of expected return periods during different emissions scenarios and future tin					uture time	periods			
Jeiect		Target			Equivale	ent Current C	limate Retu	rn Period		
taraat	Duration	Return		2031	-2050			2081	-2100	
larget		Period	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCP2.6	RCP4.5	RCP6.0	RCP8.5
Kotuko	10 min	3	3.5	3.7	3.6	3.8	3.5	4.2	4.7	6.0
return	20 min	3	3.6	3.7	3.7	3.8	3.6	4.3	4.8	6.2
	30 min	3	3.6	3.7	3.7	3.9	3.6	4.3	4.9	6.3
period	1 hr	3	3.6	3.8	3.7	3.9	3.6	4.4	4.9	6.5
	2 hr	3	3.6	3.8	3.7	3.9	3.6	4.3	4.9	6.5
("Containmen"	6 hr	3	3.4	3.6	3.5	3.7	3.4	4.0	4.4	5.4
	12 hr	3	3.3	3.4	3.4	3.5	3.3	3.7	4.0	4.7
Standard")	24 hr	3	3.2	3.3	3.3	3.4	3.2	3.5	3.7	4.2
	10 min	6	7.3	7.7	7.6	8.0	7.3	9.0	10	14
	20 min	6	7.4	7.8	7.7	8.1	7.4	9.2	11	15
	30 min	6	7.5	7.9	7.7	8.2	7.5	9.3	11	15
	1 hr	6	7.5	8.0	7.8	8.3	7.5	9.5	11	16
	2 hr	6	7.5	8.0	7.8	8.3	7.5	9.6	11	16
	6 hr	6	7.2	7.5	7.4	7.8	7.2	8.7	9.9	13
	12 hr	6	6.9	7.2	7.1	7.4	6.9	8.1	9.0	11
	24 hr	6	6.7	6.9	6.8	7.1	6.7	7.6	8.2	9.8

Table 4:Wellington Regional average equivalent current climate return.Return periods shown inmonths for a range of expected return periods during different emissions scenarios and future time periods

	Target	Equivalent Current Climate Return Period										
Duration	Return		2031	-2050			2081	-2100				
	Period	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCP2.6	RCP4.5	RCP6.0	RCP8.			
10 min	3	3.5	3.7	3.6	3.8	3.5	4.2	4.7	6.0			
20 min	3	3.6	3.7	3.7	3.8	3.6	4.3	4.8	6.2			
30 min	3	3.6	3.7	3.7	3.9	3.6	4.3	4.9	6.3			
1 hr	3	3.6	3.8	3.7	3.9	3.6	4.4	4.9	6.5			
2 hr	3	3.6	3.8	3.7	3.9	3.6	4.3	4.9	6.5			
6 hr	3	3.4	3.6	3.5	3.7	3.4	4.0	4.4	5.4			
12 hr	3	3.3	3.4	3.4	3.5	3.3	3.7	4.0	4.7			
24 hr	3	3.2	3.3	3.3	3.4	3.2	3.5	3.7	4.2			
10 min	6	7.3	7.7	7.6	8.0	7.3	9.0	10	14			
20 min	6	7.4	7.8	7.7	8.1	7.4	9.2	11	15			
30 min	6	7.5	7.9	7.7	8.2	7.5	9.3	11	15			
1 hr	6	7.5	8.0	7.8	8.3	7.5	9.5	11	16			
2 hr	6	7.5	8.0	7.8	8.3	7.5	9.6	11	16			
6 hr	6	7.2	7.5	7.4	7.8	7.2	8.7	9.9	13			
12 hr	6	6.9	7.2	7.1	7.4	6.9	8.1	9.0	11			
24 hr	6	67	6.9	6.8	7.1	67	7.6	82	9.8			

Select appropriate planning horizon (timeframe and RCP)

Table 4:Wellington Regional average equivalent current climate return.Return periods shown inmonths for a range of expected return periods during different emissions scenarios and future time periods

	Target			Equivale	ent Current C	limate Retu	rn Period			
Duration	Return		2031	-2050			2081	-2100		
	Period	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCP2.6	RCP4.5	RCP6.0	RCP8.5	
10 min	3	3.5	3.7	3.6	3.8	3.5	4.2	4.7	6.0	
20 min	3	3.6	3.7	3.7	3.8	3.6	4.3	4.8	6.2	
30 min	3	3.6	3.7	3.7	3.9	3.6	4.3	4.9	6.3	Find new
1 hr	3	3.6	3.8	3.7	3.9	3.6	4.4	4.9	6.5	
2 hr	3	3.6	3.8	3.7	3.9	3.6	4.3	4.9	6.5	target ARI for
6 hr	3	3.4	3.6	3.5	3.7	3.4	4.0	4.4	5.4	
12 hr	3	3.3	3.4	3.4	3.5	3.3	3.7	4.0	4.7	current rainfall
24 hr	3	3.2	3.3	3.3	3.4	3.2	3.5	3.7	4.2	current rainal
10 min	6	7.3	7.7	7.6	8.0	7.3	9.0	10	14	data
20 min	6	7.4	7.8	7.7	8.1	7.4	9.2	11	15	data
30 min	6	7.5	7.9	7.7	8.2	7.5	9.3	11	15	
1 hr	6	7.5	8.0	7.8	8.3	7.5	9.5	11	10	
2 hr	6	7.5	8.0	7.8	8.3	7.5	9.6	11	16	
6 hr	6	7.2	7.5	7.4	7.8	7.2	8.7	9.9	13	
12 hr	6	6.9	7.2	7.1	7.4	6.9	8.1	9.0		
24 hr	6	6.7	6.9	6.8	7.1	6.7	7.6	8.2	9.8	

NINA Taihoro Nukurangi

Findings

- Documented for Wellington Water
- To enable consideration of climate-change adjusted target Average Recurrence Intervals for future levels of service for spills of untreated wastewater from Wellington Water's wastewater networks

Modelling Symposium 2023

Climate changes effect on subannual rainfall return periods

Prepared for Wellington Water

May 2022

Findings

 This report provides estimates of how rainfall return periods, for a range of durations, will change under different future climate scenarios...

Modelling Symposium 2023

Table 4 contains equivalent current climate return periods for the Wellington Region for a range of future climate return periods and scenarios. These have been estimated from monthly maxima data from each gauge record using the first (GEV-based) method described above before the weighted mean of all sites was taken to provide a regional average. For completeness, tables containing the values obtained from each rainfall gauges are provided in Appendix A.

An example application of the results in Table 4 might be as follows, assuming RCP 6.0 is considered most appropriate. If a wastewater network upgrade is required in the Wellington Region that is targeted to meet a 12-month "containment standard" over a time horizon up to 2050, then this should be designed to meet the 16-month "containment standard" under current rainfall conditions, adopting a nominal 1-hour response duration (see highlighted cell). The implication is that a containment standard of 16 months under current rainfall is predicted to still meet a 12-month containment standard in about 2050, assuming RCP 6.0 projections for this example.

 Table 4:
 Wellington Regional average equivalent current climate return. Return periods shown in months for a range of expected return periods during different emissions scenarios and future time periods

	Target	Equivalent Current Climate Return Period										
Duration	Return		2031	-2050			2081	-2100				
	Period	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCP2.6	RCP4.5	RCP6.0	RCP8.5			
10 min	3	3.5	3.7	3.6	3.8	3.5	4.2	4.7	6.0			
20 min	3	3.6	3.7	3.7	3.8	3.6	4.3	4.8	6.2			
30 min	3	3.6	3.7	3.7	3.9	3.6	4.3	4.9	6.3			
1 hr	3	3.6	3.8	3.7	3.9	3.6	4.4	4.9	6.5			
2 hr	3	3.6	3.8	3.7	3.9	3.6	4.3	4.9	6.5			
6 hr	3	3.4	3.6	3.5	3.7	3.4	4.0	4.4	5.4			
12 hr	3	3.3	3.4	3.4	3.5	3.3	3.7	4.0	4.7			
24 hr	3	3.2	3.3	3.3	3.4	3.2	3.5	3.7	4.2			
10 min	6	7.3	7.7	7.6	8.0	7.3	9.0	10	14			
20 min	6	7.4	7.8	7.7	8.1	7.4	9.2	11	15			
30 min	6	7.5	7.9	7.7	8.2	7.5	9.3	11	15			
1 hr	6	7.5	8.0	7.8	8.3	7.5	9.5	11	16			
2 hr	6	7.5	8.0	7.8	8.3	7.5	9.6	11	16			
6 hr	6	7.2	7.5	7.4	7.8	7.2	8.7	9.9	13			
12 hr	6	6.9	7.2	7.1	7.4	6.9	8.1	9.0	11			
24 hr	6	6.7	6.9	6.8	7.1	6.7	7.6	8.2	9.8			
10 min	9	11	12	12	12	11	14	16	22			
20 min	9	11	12	12	13	11	14	17	24			
30 min	9	11	12	12	13	11	15	17	24			
1 hr	9	12	12	12	13	12	15	18	26			
2 hr	9	12	12	12	13	12	15	18	27			
6 hr	9	11	12	11	12	11	14	16	22			
12 hr	9	11	11	11	11	11	13	14	19			
24 hr	9	20	••	10	11	10	12	13	16			

Climate changes effect on sub-annual rainfall return periods

Findings

 ...in the form of Wellington Region average equivalent current climate return periods associated with selected future return periods.

	Target	Equivalent Current Climate Return Period									
Duration	Return		2031	-2050			2081	-2100			
	Period	RCP2.6	RCP4.5	RCP6.0	RCP8.5	RCP2.6	RCP4.5	RCP6.0	RCP8.5		
10 min	12	15	16	16	17	15	19	22	32		
20 min	12	15	16	16	17	15	20	23	33		
30 min	12	15	16	16	17	15	20	24	34		
1 hr	12	16	17	16	18	16	21	25	37		
2 hr	12	16	17	16	18	16	21	25	38		
6 hr	12	15	16	16	17	15	19	22	32		
12 hr	12	14	15	15	16	14	17	20	27		
24 hr	12	14	14	14	15	14	16	18	22		
10 min	18	23	25	24	26	23	30	35	50		
20 min	18	23	25	24	26	23	30	36	53		
30 min	18	24	25	25	26	24	31	37	55		
1 hr	18	24	26	25	27	24	32	39	59		
2 hr	18	24	26	25	28	24	33	40	64		
6 hr	18	23	25	24	26	23	30	36	53		
12 hr	18	22	23	23	24	22	27	31	43		
24 hr	18	21	22	21	22	21	25	27	35		
10 min	24	31	33	32	35	31	40	48	70		
20 min	24	32	34	33	36	32	42	50	75		
30 min	24	32	34	33	36	32	42	51	77		
1 hr	24	32	35	34	37	32	44	54	84		
2 hr	24	33	36	35	38	33	46	57	92		
6 hr	24	31	34	33	35	31	42	50	77		
12 hr	24	30	32	31	33	30	38	44	62		
24 hr	24	28	30	29	31	28	34	38	50		
10 min	36	47	51	49	53	47	63	75	110		
20 min	36	48	52	50	55	48	65	79	120		
30 min	36	49	52	51	55	49	66	81	120		
1 hr	36	50	54	52	57	50	69	85	140		
2 hr	36	51	55	53	59	51	72	91	150		
6 hr	36	48	52	51	55	48	66	81	130		
12 hr	36	46	49	48	51	46	59	70	100		
24 hr	36	43	45	45	47	43	53	60	79		

Modelling Symposium 2023

Climate changes effect on s be an information and periods

17

Summary

- Wet weather overflow frequency is a key metric of wastewater performance
- A well-calibrated model is the most reliable way to assess average performance, using a long rainfall record
- The impact of climate change would ideally be tested with a continuous "future climate" rainfall time-series
- A simpler alternative retains the use of historic rainfall, and adjusts the target containment standard of overflows to account for the impact of climate change
- It assumes the increase in frequency of wastewater spills due to climate change is equivalent to the increase in frequency of heavy rainfall events.

Piha (NZ Geographic / Arno Gasteiger)

Modelling Symposium 2023

Public health warning

water quality in this area is not safe for swimming, collecting shellfish or other water activities.

Acknowledgements

- Trevor Carey-Smith (NIWA)
- Alistair Osborne (Wellington Water)
- Nadia Nitsche (Wellington Water)
- Tim Lockie (Hydraulic Analsis Ltd)
- Nathan Shaw (Hydraulic Analysis Ltd)

Public health warning

Water quality in this area is not safe for swimming, collecting shellfish or other water activities.

Piha (NZ Geographic / Arno Gasteiger)

Thank you! Questions? Patai?

