

Modelling Symposium

Creating Resilient Communities; Understanding and Defining Flood Risk

Presented by Simran Bassan, Ajay Desai, Juan Alvarez De Lugo, Pranil Wadan

Understanding and Defining Flood Risk

- Is one of the most significant natural hazards faced by communities around the world
- Inderstanding flood risk becomes evermore important when considering Auckland anniversary weekend flood and Cyclone Gabrielle
- See Assess potential impact of flood hazards on the built environment people and property

Tools for Assessing Flood Risk

S Assessment tools are critical in assessing flood hazards and associated damages

S Available tools:

Hazard vulnerability curves

S Australia Rainfall Runoff Guidelines 2019 (ARR2019)

- Icod fragility curves
 - RiskScape methodology 'RiskScape: Flood fragility methodology', (NIWA, 2010)

What is a flood hazard?

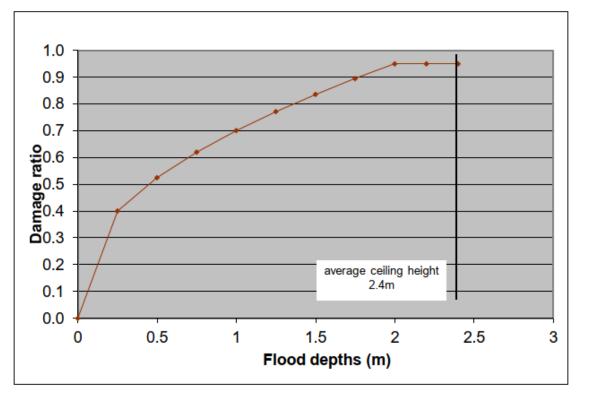
- Bazard: A source of potential harm or a potential to cause loss.
- In the focus here is flooding it has the potential to cause damage to the community as we have seen in Auckland, Hawkes Bay and Gisborne/Tairawhiti
- Flood Hazard: The potential loss of life, injury and economic loss caused by future flood events.
- The degree of hazard is influenced by:
 - extent, depth, velocity
 - How isolated are you?
 - Bow quickly is the water rising?
 - What help can you get?
- <u>All</u> of these influence flood hazard

Hazard Vulnerability Curves and Flood Fragility Curve

- Solution of the ARR guidelines provides a set of standard flood hazard vulnerability curves which define the different levels of flood hazard for people, vehicles and structures
- Ill Flood fragility curves provide relationship between flood depth and the likelihood of damage to a building
- Is Flood fragility curves are typically developed by experts by analysing historic flood events and damage datasets

Hazard Vulnerability Curves – ARR 2019

5.0 4.5 4.0	- H6 - unsafe for vehicles and people. All building types considered vulnerable to failure	Hazard Vulnerability Classification		Classificatio n Limit (D*V)	Limiting Still Water Depth (m)	Limiting Velocity (m/s)
3.5 · 3.0 · 2.5 · 2.0 · 1.5 · 1.0 ·	H5 - unsafe for vehicles and people. All buildings vulnerable to structural damage. Some less robust building types vulnerable to failure.	H6	Structural failure	D*V > 4.0	-	-
		H5	Structural damage	D*V <= 4.0	4.0	4.0
		H4	All people and vehicles	D*V <= 1.0	2.0	2.0
		H3	Children/elderly	D*V <= 0.6	1.2	2.0
	H3 - unsafe for vehicles, children and the elderly	H2	Small vehicles	D*V <= 0.6	0.5	2.0
0.0	H2 - unsafe for small vehicles H1 - generally safe for people, vehicles and buildings 0.0 1.0 2.0 3.0 4.0 5.0	H1	Generally safe	D*V <= 0.3	0.3	2.0


- S Hazards are classified as H1 − H6 depicting increasing levels of flood risk
- S Thresholds identify which different parties which will be at risk in different flood conditions

Flood Fragility Curves – Risk Scape model

Second Second

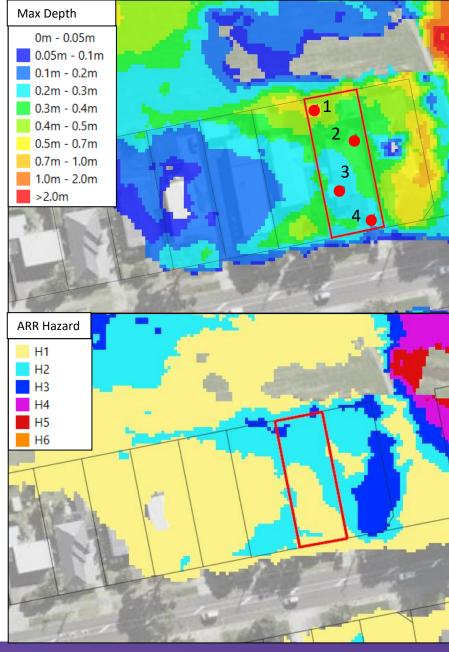
Damage state	Description	Damage ratio	
DS0	Insignificant	0–0.02	
DS1	Light—Non-structural damage, or minor non-structural damage	0.02–0.1	
DS2	Moderate—Reparable structural damage	0.1–0.5	
DS3	Severe—Irreparable structural damage	0.5–0.95	
DS4	Collapse—Structural integrity fails	> 0.95	

- Bamage states identify
 - Extent of damages to a building and its content
 - Repair actions required to restore the structure to its pre-flood condition

Assessing flood risk

Sorrelate flood fragility curves and flood hazard definitions to understand −

- Bow bad is the flooding?
- How risky is it for people and property?
- How much damage is caused?
- How long it will take to repair all of this?
- Solution Stress Str
 - Bevelop a flood model and RUN it for various storms
 - Solution Strategy Determine flood extents, flood depths, velocities and the depth times velocity
 - Solution States Stat
 - Solution Classify the flood hazard for each building and create a damage index



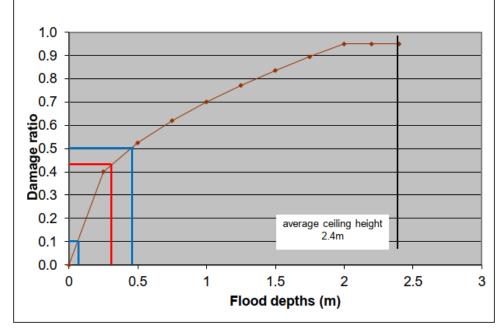
Case Study 1 - Property flooding

- Model predicts 260mm-530mm of flooding for a 100yr event inclusive of climate change
- Analyse flood extents, flood depths, velocities as well as the <u>depth * velocity</u>
- Inder the ARR guidelines, this property is to expect a flood risk level of H1, H2 and H3.

Location	Max Depth	Max Velocity	D*V	Hazard Vulnerability
Point 1	0.53 m	0.15 m/s	0.07	H3
Point 2	0.34 m	0.11 m/s	0.03	H2
Point 3	0.26 m	0.06 m/s	0.02	H1
Point 4	0.26 m	0.11 m/s	0.03	H1

Case Study 1 – Habitable floor flooding

- Inder the ARR 2019 guidelines, this property is to expect a flood risk level of H1, H2 and H3.
- Rain gauge data shows rainfall of 190mm recorded over 24hrs
- Is Flood Depths approximately 300mm
- Solution Floor levels were above peak water level and have freeboard



Case Study 2 – Internal Damage using fragility curves

- Approximately 300mm of flooding
- Bamage ratio of 0.43
- Solution State 3 Damage categorised in damage state 2
- Moderate repairable structural damage

Legend

- Damage State
- Case Study

Key Findings

- Solution State State
 - Analysis of hazards in conjunction with flood extents can be used to identify critical infrastructure and more at risk properties
- Fragility curves can be used to analysis internal damage to specific sites more in depth
 - Solution Assess the extent of damage and the expected repair actions with relation to flood depth

water

Thank you! Questions? Patai?

