AUCKLAND REGIONWIDE FLOOD MODELLING

Cheryl Bai, Principal Hydraulic Modelling Delivery Auckland Council

Content

- Why do we need a regional model
- The regional modelling project
- Technical considerations
- Data sharing

A Regionwide Picture of Our Models

Current Challenges

Regional Scale Analytics

Land use changes

High flood hazard

Climate change

Flood Forecast

Content

- Why do we need a regional model
- The regional modelling project
- Technical considerations and model validation
- Data sharing

Model Schema

The model schema

- 2D rain on grid models using TP108 hydrology
- Separate models for rural and urban areas
 - ► Regional Rural Rapid Model
 - ▶ 90% of the region, 4500km²
 - ▶ Fill flood data gaps and floodplain mapping
 - ► Main river channels and key hydraulic structures
 - ► Regional Urban Framework Model
 - Main metropolitan area
 - ► Data consistency (input & format) and accuracy
 - ► Trunk pipe network and urban streams

Two stage implementation

- Project implemented in 2 stages
 - ► Rural rapid model
 - Stage 1: piloting for the entire extent using 10x10m grids
 - Stage 2: production with much refined details
 - ► Urban framework model
 - Stage 1: piloting using a typical urban area to define constraints and detailed methodology
 - Stage 2: bulk production

The Scale

Rural Rapid Model

- 4x4m 2D grids covering 4500km²
- ► 32,000km of stream network
- ► 2,000 runoff profiles
- Over 500 hydraulic structures
- Urban Framework Model
 - > 2x2m 2D grids
 - 25ha rain zones based on RADAR grid size
 - 20% of the pipe network (>450mm)
 - ▶ 90% of the total GIS nodes

Content

- Why do we need a regional model
- The regional modelling project
- Technical considerations and model validation
- Data sharing

Methodology Development

- Model tests
 - Optimum grid size, sub-grid-sampling
 - Low flow channel and key hydraulic structures
 - Network extent and hydraulic connectivity
 - 1D/2D interaction where network is trimmed
- Key model methodology considerations
 - Speed vs Accuracy
 - Consistency vs Specifics
 - Automation vs Manual Checks

Rural Model

- Existing tool: TP108 Graphical Method
- Storm Event: Aug 2021 Kumeu flooding

Aug 2021 Event – Kumeu Township & Gauge Sites

- Urban Framework Model Validation
 - Existing tool: detailed catchment models

- Urban Framework Model Validation
 - Existing tool: detailed catchment models
 - Storm event: Jan 2023 Auckland flooding

- Urban Framework Model Validation
 - Existing tool: detailed catchment models
 - Storm event: Jan 2023 Auckland flooding
 - ► Gauge recorded 234 285mm rain within 24hrs
 - ▶ Most rain fell 5 9pm
 - ► Max 1hr depth 50 70mm
 - ► Tide gauge (POA and Onehunga)

—Onehunga

— Port of Auckland

— Tamaki

Time

Jan 2023 Event - Level Gauge

17.5 17.0 16.5

≓ 16.0

15.5

iti 15.0

± 14.5

14.0

13.5

13.0

Flow Level -Meola Creek at Motions Road Weir

Jan 2023 Event - Flood Extent Comparison

Jan 2023 Event - Flood Level Comparisons

IVIOAEI WL	18.681	IMKL
Diff	0.135	m

A DAY OF

Content

- Why do we need a regional model
- The regional modelling project
- Technical considerations and model validation
- Data sharing and Next Steps

Regionwide Model Data

- Model files are data rich and large in size
 - Tuflow models (18 rural units, 6 urban units)
 - Reports and data sheets
 - GIS layers including model inputs and outputs
 - ► Flood data in various formats

Time Series Model Outputs

Key Model Outputs

Event Verification

Catchment Management Tool

Flood Hazard Assessment

P

Regionwide

Model

Time Series Data Interrogation

Floodplain Publication

Other Regional Initiatives

Key Model Outputs

Event Verification

Catchment Management Tool

Flood Hazard Assessment

P

Regionwide

Model

Time Series Data Interrogation

Floodplain Publication

Other Regional Initiatives

THANK YOU

