

Charlotte Lockyer

Agenda

- 1. Reference Guide Update
- 2. Runoff Hydrograph Calculator

SCS Runoff Curve Number Method

Input parameters:

- Area
- Initial abstraction
- Curve number
- Time of concentration
- Rainfall

Three key changes

- Curve number map > Soil group & land cover map
- 2. Sub-catchment delineation
- 3. Post-development reduction in soil group

Gone from...

Sub-catchment delineation & reduction in post-development soil group

Runoff Hydrograph Calculator

The alternative

<u>File Edit View</u> Components GIS <u>Parameters</u> Compute <u>Results</u> <u>Tools</u> <u>Help</u>

Runoff Hydrograph Calculator (RuHC)

Runoff Hydrograph Ca	lculator			weilington		
v1 Jan 2023			V	Water		
Input parameters to be derived fro	m the methodology outlined in th	e Reference Guide for Design St	orm Hydrology.			
Site ID	Aotea	ID & referen	nce details			
Event	1% AEP Climate Change 0.0500					
Area (km2)		La lanut noromatora				
Initial Abstraction (mm)	21.6		ieters			
Soil Group	С					
Landcover	Forest					
Curve Number default	63					
Curve Number proposed	63	Justification for CN override:				
Time of Concentration (minutes)	10.0					
12-hour rainfall depth (mm)	139.2					
Peak flow (m3/s)	0.845					
Volume (m3)	2590.7	r itesuits				

Results

Peak flow (m3/s)	0.845					
Volume (m3)	2590.7					
Time (minutes)	Flow (m3/s)					
0:00	0.00					
0:01	0.00					
0:02	0.00					
0:03	0.00		Aotea 1%	AEP Climate Ch	ange	
0:04	0.00	0.90				
0:05	0.00	0.80				
0:06	0.00	0.80				
0:07	0.00	0.70				
0:08	0.00				51	
0:09	0.00	0.60			11	
0:10	0.00					
0:11	0.00	ш ³ /				
0:12	0.00	≥ 0.40				
0:13	0.00	Ë 0.20				
0:14	0.00	0.30				
0:15	0.00	0.20			- 1	
0:16	0.00					
0:17	0.00	0.10				
0:18	0.00	0.00				
0:19	0.00	0:00	3:00	6:00	9:00	12:0
0:20	0.00		Aotea	a 1% AEP Climate Ch	lange	
0:21	0.00					

Disclaimer

Runoff Hydrograph C	alculator			inigton
1 Jan 2023			V Wat	ter
put parameters to be derived	from the methodology outlined in th	e Reference Guide for Desig	an Storm Hydrology.	
ite ID	Aotea			
Event	1% AEP Climate Change			
Area (km2)	0.0500			
nitial Abstraction (mm)	21.6			
Soil Group	C			
andcover	Forest			
urve Number default	63			
urve Number proposed	63	Justification for CN overri	de:	
ime of Concentration (minutes)	10.0			
2-hour rainfall depth (mm)	139.2			
Peak flow (m3/s)	0.845			
/olume (m3)	2590.7			
ime (minutes)	Flow (m3/s)			
0:	00.00			
0:	0.00			
0:	0.00			
0:	0.00		Aotea 1% AEP Climate Cha	nge
0:	0.00	0.90		
0:	0.00	0.80		
0:	0.00			A
0:	0.00	0.70		1
0:	0.00	0.60		1
0:	0.00	0.00		11
0:	10 0.00	হ 0.50		11
0:	11 0.00	Ξ		11
0:	12 0.00	3 U.40		11
0:	13 0.00	0.30		1
0:	14 0.00			1 1
0:	15 0.00	0.20		1
0:	0.00	0.10		
0:	0.00	0.20		1 1
0:	18 0.00	0.00		
0:	19 0.00	0:00	3:00 6:00	9:00 12:00
0:	20 0.00		Aotea 1% AEP Climate Cha	nge
0-	21 0.00			

The technical stuff...

Excess runoff:

$$Q = \frac{(P - Ia)^2}{(P - Ia) + S}$$

where:

$$S = \left(\frac{1000}{CN} - 10\right) 25.4$$

Peak flow:

$$q_p = quAQFp$$

The technical stuff...

- $\ensuremath{\mathsf{q}}_u$ decreases exponentially as time of concentration (Tc) increases and,
- for any given value of Tc, the value of q_u decreases with increasing values of $I_{\rm a}/{\rm P}.$

So the RuHC uses developed I_a/P vs q_u curves in the background to estimate Qp.

Summary

The Wellington Water Ltd region now has a nifty calculator that takes the hard-yards out of estimating design flood flows*.

WWL to roll this out mid-2023.

*Note the assumptions & limitations to this approach.

Without change there is no innovation, creativity, or incentive for improvement. Those who initiate change will have a better opportunity to manage the change that is inevitable.

William Pollard

