

Dynamic Modelling of Hydrogen Sulphide (H2S) in Auckland's Sewer System

Presented by Marion Foglia DHI Water and Environment

Dynamic Modelling of Hydrogen Sulphide (H2S) in Auckland's Sewer System

Introduction

Why this project?

How can we tackle this issue?

What is being in place, can we do better? What are the existing tool to make it better?

Set up a Water quality model

How to build a water quality model using MIKE+?

Discussion

Problems related to generation of H2S in sewers

- Corrosion of infrastructure
- Odour issues
- Increased maintenance cost
- Unsafe work environment

H₂S gas levels and typical exposure symptoms

L O W	0 - 10 ppm	Irritation of the eyes, nose and throat
M O D	10 - 50 ppm	Headache Dizziness Nausea and vomiting Coughing and breathing difficulty
H – G H	50 - 200 ppm	Severe respratory tract irritation Eye irritation / acute conjunctivitis Shock Convulsions Coma Death in severe cases

How this H2S being created

organic matter + bacteria + nutrient + others **Wastewater**

Anaerobic: Sulphate -> Sulphide

pressure mains and stagnant water

Anaerobic Environment: **Hydrogen Sulphide (H2S)** Released = odour and corrosion problems

How can we tackle this issue?

- Chemical dosing: Magnesium Hydroxide Quantify randomly and perform at random locations.
- Hydraulic models

Can these models be applied to predict H2S in the network? => Water Quality model

To develop a pilot model of H2S based on the Whangaparaoa wastewater network hydraulic model and **demonstrate the ability of network models to estimate H2S at different locations in the wastewater network**.

How to build a water quality model

MIKE 1D - hydraulic calculations

Transport of pollutants in water phase by Advection-Dispersion

MIKE ECO Lab WATS template coupling to MIKE 1D for Water Quality modelling

WATS – Wasterwater Aerobic/Anaerobic Transformation in Sewers

MIKE ECO Lab WATS

MIKE Zero - [H2S_module_WATS2013_latest.ecolab]

🗄 📔 File View Window Help

: D 🚅 🔒 | X 🖻 🛍 | 🎒 💡 📢

– 🗆 🗙

- 8×

	• • •	Pr	ocesses			
	S_A X_Hw	Vi	sibility group any	✓ Level all ✓ ✓ expand		🛅 🗾 🗙 🔸 🔶
	X_S1		No. Symbol	Expression	Description	^
	-X_S2		4 AGBE1	Y Hf/(1-Y Hf) *S S/(K Sf+S S) *k half * POW(MAX(0, S O),0,5) *A wp/V * ftemp alphaf	Aerobic growth in biofilm	
	<u>s</u> п		5 AGBF2	-AGBE1/Y Hf	Aerobic growth in biofilm for S F and S A calculation	
	S_NO3N		6 AGBF3	((1-Y Hf)/Y Hf)*AGBF1	Aerobic growth in biofilm for S_O calculation	
	-S SO4S		7 MAEN	g m * fsat1 SO * X Hw * ftemp_alphaW	Maintenance energy requirement (aerobic)	
			8 MAEN_S	IF ((S_S > 0.5), MAEN, 0)	Maintenance energy requirement (aerobic) for readily biodegradable subs	trate
	Temperature		9 MAEN_X	IF ((S_S > 0.5), 0, MAEN)	Maintenance energy requirement (aerobic) for heterothophic biomass	
	X_Fe2		10 AEHF	k_h1 *f_S1 * fsat1_SO_* f_BW_E_a * ftemp_alphaW	Aerobic hydrolysis for fast hydrolyzable substrate (X_S1)	
	X_Fe3		11 AEHS	k_h2 * f_S2 * fsat1_SO * f_BW_E_a * ftemp_alphaW	Aerobic hydrolysis for slow hydrolyzable substrate (X_S2)	
	-X_FeS		12 ANHF	fe *k_h1 * f_S1 * fsat2_SO_ *Anox_sat2* f_BW_E_an * ftemp_alphaW	Anaerobic hydrolysis for fast hydrolyzable substrate (X_S1)	
÷.	Constants		13 ANHS	n_fe * k_h2 * f_S2 * fsat2_SO *Anox_sat2* f_BW_E_an * ftemp_alphaW	Anaerobic hydrolysis for slow hydrolyzable substrate (X_S2)	
+ ·	Forcing		14 FEBW	q_fe * S_F/(K_fe +S_F) * fsat2_SO *Anox_sat2* f_BW_E_an * ftemp_alphaW	Fermentation in bulk water and biofilm	
	Auxiliaries		15 COSU	24 *kSIIc*(POW(MAX(0,SulfideDis),n1))*POW(MAX(0,S_O),n2)*ftemp_alphaW	Chemical oxidation of sulfide	
	ACRW1		16 HSRE	24 * 0.69 * (1+0.17*POW(Fr,2)) * POW(ABS(Slope*u),(3/8)) * j * SulfideDis / d_m * ftemp_alphaT	Sulfide release to gaseous phase	
	AGBW2		17 REAE	IF (Rel_Depth >=1.0) THEN 0 ELSE alpha_reae*K_La * (beta_reae*S_Os - S_O)*ftemp_alphaT	Reaeration	
	AGBW3		18 AXBW	if K_Sw+S_S <= 0 then 0 else (my_h_NO3*(S_S/(K_Sw+S_S))*Anox_sat1*fsat2_SO*X_Hw*ftemp_alphaW)	Anoxic bio mass growth in bulk water	
	-AGBF1		19 AXBF	k_half_NO3*POW(MAX(0, S_NO3N),0.5)*2.86*Y_Hf_NO3/(1-Y_Hf_NO3)*S_S/(K_Sf+S_S)*fsat2_SO*A_wp/V*ftemp_alphaf	Anoxic bio mass growth in biofilm	
	-AGBF2	:	20 AXMA	q_m_NO3*Anox_sat1*fsat2_SO*X_Hw*ftemp_alphaW	Maintenance energy requirement (anoxic)	
	AGBF3		21 AXMA_S	IF ((S_S > 0.5), AXMA, 0)	Maintenance energy requirement (anoxic) for readily biodegradable subst	rate
	···MAEN		22 AXMA_X	IF ((S_S > 0.5), 0, AXMA)	Maintenance energy requirement (anoxic) for heterothophic biomass	
	MAEN_S		23 DEBM	d_H_ana*fsat2_SO*Anox_sat2*X_Hw*ftemp_alphaW	Decay of biomass	
	MAEN_X		24 BOSU	24 *kSIIb*(POW(MAX(0,SulfideDis),n1))*POW(MAX(0,(S_O)),n2)*ftemp_alphaW	Biological oxidation of sulfide	
	···AEHF		25 OXSB	24*kSIIoxf*POW(MAX(0,SulfideDis),0.5)*POW(MAX(0,S_O),0.5)* A_wp/V*ftemp_alphaf*fSIIb_pH	Oxidation of sulfide in biofilm	
	AEHS		26 HSFO	24 * a*POW(MAX(0,(S_F+S_A+X_S1)), 0.5) *fsat2_SO*Anox_sat2*Anox_sat3* A_wp/V * ftemp_alphaSf	H2S formation	
	ANHF		27 REFE	K_Fe3*X_Fe3	Iron+++ reduction to iron++	
	ANHS		28 S_O_balance	MAX(-S_O * 86400/dt,(-AGBW3-AGBF3-MAEN-1/Rcwc*COSU-1/Rcwb*BOSU-1/Rcwb*OXSB+REAE))	Dissolved oxygen balance	
	COSU		29 S_F_balance	MAX(-S_F * 86400/dt,(AGBW2+AGBF2-1/Y_Hw*AXBW-1/Y_Hw*AXBF-MAEN_S-AXMA_S+AEHF+AEHS+ANHF+ANHS-FEBW-2*HSFO))	Fermentable and readily biodegradable products balance	
	HSRE		30 S_A_balance	MAX(-S_A * 86400/dt,(AGBW2+AGBF2-1/Y_Hw*AXBW-1/Y_Hw*AXBF-MAEN_S-AXMA_S+AEHF+AEHS+FEBW-2*HSFO))	Fermentation products balance	
	REAE		31 X_Hw_balance	MAX(-X_Hw * 86400/dt,(AGBW1+AGBF1+AXBW+AXBF-MAEN_X-AXMA_X-DEBM))	Heterotrophic active biomass in water phase balance	
	AXBW		32 X_S1_balance	MAX(-X_S1 * 86400/dt, -AEHF-ANHF-2*HSFO)	Fast hydrolyzable substrate balance	
	AXBF		33 X_S2_balance	MAX(-X_S2 * 86400/dt,(-AEHS-ANHS+DEBM))	Slowly hydrolyzable products balance	
	AXMA		34 PRFE	if((K_FeST_calc < K_FeST), Prec_rate , 0)	Iron precipitation	
	AXMA_S		35 S_II_balance	MAX(-S_II* 86400/dt, (-PRFE + HSFO-COSU-BOSU-OXSB-HSRE))	Total Sulfide (H2S+HS-) balance	
	-AXMA_X		36 S_NO3N_balance	MAX(-S_NO3N * 86400/dt,(-1*(1-Y_Hw_NO3)/(2.86*Y_Hw_NO3)*AXBW-1*(1-Y_Ht_NO3)/(2.86*Y_Ht_NO3)*AXBF-1/2.86*AXMA))	Nitrate balance	
	··· DEBM		37 S_SO4S_balance	MAX(-5_SO45 * 86400/dt,(-HSFO +COSU+BOSU+OXSB))	Sulfate balance	
	BOSU		38 H2SR	HSKE TV/dX	H25 release per meter	
	OXSB		39 HZSR_Abs		H25 release per volume	
	-HSFU		40 Fe2_balance	MAX(-X_F22*86400/dt, IT(DH < 8, REFE - (-2.2823*DH + 20)*PRFE, REFE - Fe_MW/S_MW *PRFE))	2-valent iron balance	~
	S O balance		HI FEA DAIANCE	MAALA FED CONTUNUOTKFFF)	a-valen iron balance	

Initial Conditions of the H₂S Model

	WQ Components									
Boundary type	DO	Temperature (in waste water)	SO4	рН	SA Fermentation products	SF Fermentable and readily biodegradable products	XBW active biomass in water phase	XS1 Fast hydrolyzable substrate	XS2 Slowly hydrolyzable products	Total COD
	1	2	3	4	5	6	7	8	9	5+6+7+8+9
	mg/l	Deg C	mg/l		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Storm runoff	10	15	0	7	0	0	0	0	0	0
Catchment discharge PE-based; diurnal; wastewater	8	25	150	7	25	50	67	202	477	821
Catchment discharge area-based; constant; baseflow	8	15	0	7	0	0	0	0	0	0
Network load Trade waste; geocoded; loadpoints	8	25	150	7	25	50	67	202	477	821
Network load Millwater; single inflow	8	25	150	7	25	50	67	202	477	821

Technical model set up - Simplification

- Rising mains needed to be modelled
- Model simplification to improve stability and decrease the computation time
 - Water Quality calculation are time and space consuming due to the advection-dispersion equation

Risk Mapping - Max Total H₂S Release

Risk Mapping - Max Total H₂S Formation

 $H_2S \ Model \ Results \\ H_2S \ release \ \text{per meter of pipe in the rising main downstream of Stanmore PS}$

H₂S Model Results

Longitudinal profile from Stanmore to Hobbs PS – Rising main until node 27658236. H_2S release per meter (g/m) at 7 pm.

 $\begin{array}{l} H_2 S \ Model \ Results \\ \ Longitudinal profile from Hobbs \ PS \ to \ WWTP - Rising \ main \ until \ node \ 27672040. \\ H_2 S \ formation \ per \ meter \ (g/m) \ at \ 9 \ am. \end{array}$

H₂S release per meter (g/m) at 2 pm. Longitudinal profile from Hobbs PS to WWTP – Rising main until node 27672040.

H₂S formation per meter (g/m) at 9 am. Longitudinal profile from Hobbs PS to WWTP – Rising main until node 27672040.

Qualitative comparison between H_2S measured (ppm) and H_2S release per volume in gravity pipe upstream of Hobbs PS.

Dosing Scenario

Result of Magnesium Hydroxide [Mg(OH)₂] Dosing – Increase in pH

Chemical dosing was simulated by increasing pH from 7 to 9

Distribution	of Sulfide	Species at	Selected	рΗ	Values	at 20°C
--------------	------------	------------	----------	----	--------	---------

рН	7.0	7.5	8.0	8.5	9.0
H ₂ S (%)	51	25	9	3	1
HS-(%)	49	75	91	97	99

In MIKE ECO Lab, chemical dosing is possible with Nitrate and Iron

Sites for Chemical Dosing – Orewa PS and Stanmore PS

Discussion – Model outputs

H₂S model results provided insight into the following:

Where is sulphide being formed in the network? – Water, nutrient - Anaerobic , -Water age

>Where will the release happen - identify critical location in the network? – potential air availability, velocity of the flow/steepness of slope

>Where it is possible to decrease the release of the H_2S ?

>How much does the dosing impact the release of H_2S ?

Summary of Results – Model efficiency

- H₂S model at network scale is possible.

- H_2S in gas phase results can be visualized spatially across the network.
- Chemical Dosing (Magnesium Hydroxide) can be modelled and assess it's efficiency
- Limitation: input data

Recommended Monitoring Campaign

Constituents to be monitored	Period	Sampling interval	Comment
Flow	2-7 days	15 min	Flow at same sampling interval as the WQ parameters listed below
Total COD	2-7 days	60 min	
Filterable COD	2-7 days	60 min	
Dissolved Oxygen	2-7 days	15 min	
pН	2-7 days	15 min	
Temperature	2-7 days	15 min	
Total dissolved sulfide	2-7 days	15 min	
H ₂ S in liquid	2-7 days	15 min	
SO4			
Free Iron	2-7 days	15 min	Required only if dosing. However, it is preferred that any dosing is turned off during measuring campaign
NO ₃	2-7 days	15 min	Required only if dosing. However, it is preferred that any dosing is turned off during measuring campaign

Recommendations

Monitoring campaign

➤Ventilations

Pumping Regime Optimization

➢Dosing

Conclusion

Model able to predict formation and release of H2S => H2S risk maps

No need to export to another model

Result viewing made in MIKE platform MIKE+

The model supports the assessment of mitigation options

Modelling Symposium

Thank you! Questions? Patai?

