****\$P

Water New Zealand Stormwater Conference 23-25 May 2023 I Auckland Te Roopu Wai Āwhātanga

Outcome Based Sizing of Stormwater Treatment Systems

Kaikōrero / Presenter Matthew Murdock

Agenda

- 1. Outcome Based Design
- 2. Conventional Sizing Approaches
- 3. Research Methodology
- 4. Results
- 5. Further Considerations
- 6. Conclusion

Section 1 Outcome Based Design

- Design approach intended to deliver a consistent result
- Focus on Auckland and Christchurch design methodologies and intended outcomes
 - Auckland 90% of annual runoff treated
 - Christchurch 80% of annual runoff treated
- This approach could easily be modified to another metric

Section 2

Conventional Sizing Approaches

- Volume-based systems are sized based on a water quality volume
 - Calculated using a rainfall depth (mm)
- Flow-based systems are sized based on a water quality flow rate
 - Calculated using a rainfall intensity (mm/hr)
- Devices use different sizing methodologies but typically the same WQV or WQF is used, depending on whether the system is volume or flow-based
- "Input Based"

Section 3

Research Methodology

- Two rain gauges
- Four treatment systems
 - Raingarden
 - Infiltration Basin
 - StormFilter (SW360)
 - Filterra/Bioscape (SW360)
- Conceptual hydrological (run-off and routing) and hydraulic model
- Rational Method
- Catchment of 1 hectare with a runoff coefficient of 0.65
- 5-year period series rainfall
- 1-(Volume Bypassed/Total Inflow Volume) = % runoff treated
- Each model initialised with a starting rainfall depth or intensity

Research Methodology

Limitations

- 10-minute time-step
- Rain gauge specific
- Losses due to evapotranspiration and media storage were not included
- Climate change was not considered
- Fixed run-off was used to generate the synthetic inflow hydrographs

Section 4 Results

Results GD01 Water Quality Only Raingarden (Auckland Sizing Methodology & Rainfall Data)

Treatment System	Raingarden (WQ only as per GD01 guidance)					
Infiltration Rate, K (m/hr)	1.0	0.5	0.2	0.15	1.0	1.0
Infiltration Rate (mm/hr)	1,000	500	200	150	1,000	1,0001
Ponding Depth (mm)	150	150	150	150	200	1501
Footprint, A (m ²)	54	91	172	209	50	2001
Equivalent Rainfall Intensity (mm/hr)	<u>4.2</u>	<u>3.5</u>	<u>2.6</u>	2.4	<u>3.9</u>	15.41
% of Total Runoff Treated	90%	90%	90%	90%	90%	98 % ¹
1. Applying the minimum area requirement of 2% of the total catchment when using an infiltration rat						

of 1,000 mm/hr and a ponding depth of 150 mm.

GD01 recommends a rainfall intensity of **10 mm/hr** to treat approximately 90% of annual runoff

Proprietary Systems (Auckland Rainfall Data)

Treatment System	Filterra	StormFilter
Footprint (m ²)	23.4	5.0
Equivalent Rainfall Intensity (mm/hr)	<u>9.1</u>	<u>9.5</u>
% of Total Runoff Treated	90%	90%

GD01 recommends a rainfall intensity of **10 mm/hr**

to treat approximately 90% of annual runoff

Raingarden (Christchurch Sizing Methodology & Rainfall Data)

Treatment System	Raingarden		
Infiltration Rate (mm/hr)	30	30	200
Ponding Depth (mm)	300	200	300
Base Area (m²)	146	134	7.5
Top Area (m ²)	175	226	60
Equivalent Rainfall Depth (mm)	20.2	<u>17.4</u>	<u>6.9</u>
% of Total Runoff Treated	80%	80%	80%

CCC recommend a rainfall depth of **20 mm** to treat approximately 80% of annual runoff (for Raingardens)

Infiltration Basin (Christchurch Sizing Methodology & Rainfall Data)

Treatment System	Infiltration Basin		
Infiltration Rate (mm/hr)	20	20	12.5
Ponding Depth (mm)	1,000	500	1,000
Base Area (m²)	66	130	83
Top Area (m ²)	131	176	155
Equivalent Rainfall Depth (mm)	<u>10.2</u>	<u>10.0</u>	<u>12.7</u>
% of Total Runoff Treated	80%	80%	80%

CCC recommend a rainfall depth of **25 mm** to treat approximately 80% of annual runoff (for Infiltration Basins)

11

Proprietary Systems (Christchurch Rainfall Data)

Treatment System	Filterra	StormFilter
Footprint (m2)	5.9	1.8
Equivalent Rainfall Intensity (mm/hr)	2.3	<u>2.4</u>
% of Total Runoff Treated	80%	80%

CCC recommend a rainfall intensity of **5 mm/hr** to treat approximately 80% of annual runoff

Results Summary

- Systems have a large <u>Factor of Safety</u> in most cases
- Changes in design variables have a significant effect on the outcome
- Variation likely due to implicit <u>Factors of Safety</u>
- Location specific rainfall analysis is crucial

Section 4

Further Considerations

- Factors of Safety & Catchment Level Outcomes
 - Explicit (e.g., GD01 Water Quality Raingarden)
 - Implicit (e.g., infiltration rates)
- Alternative Outcomes?

Maintenance

- Size of the system will affect the required maintenance frequency and operational cost. Typically:
 - A smaller system = less expensive maintenance (per maintenance) but requires more frequent maintenance
 - A larger system = more expensive maintenance (per maintenance) but requires less frequent maintenance
- Maintenance frequency is predominantly dependent on system function and site-specific sediment mass loads
- When sizing treatment systems whole of life consequences on system operation and maintenance must be considered!

End Use

- Effort required is significant for a one-off design or small development
- Best suited for:
 - Councils looking at regionwide catchment management
 - Large scale projects, such as alliance projects
- This method should <u>not</u> be used without first engaging with the local or regional Council

Section 6 Conclusion

Conclusion

- Treatment systems can be sized to achieve consistent outcomes regardless of device type and location
- Device and location specific design inputs are required
- The findings highlight that some current methods are not necessarily aligned to deliver a consistent outcome
- It appears that the rainfall depth and intensities may include a FoS which is additional to other explicit or implicit FoS
- Where FoS are transparent and explicit, informed discussion can take place between designer and regulator to agree any appropriate adjustments
- This study suggests there is an opportunity for further optimisation of stormwater treatment system sizing

Thank you

wsp.com/nz