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ABSTRACT

Wastewater overflows can have a significant impact on the environment. During
these overflows, sewage is released into nearby water bodies which can lead to
several environmental problems and can affect human health. For years, water
utilities have invested in improving the management of wastewater overflows by
establishing long term monitoring plans of their constructed sewer overflow
structures. These monitoring programmes alert operators of overflows occurring
with the goal of better prioritising resources on the ground.

This paper outlines a recent trial undertaken to enhance wastewater monitoring
datasets with the latest technologies in artificial intelligence (AI) and support
operators with the early identification of potential blockages, forecasted overflows
and trends in inflow/infiltration at a catchment level. Here are some ways AI and
machine learning (ML) have been used for these purposes:

 Wastewater blockage detection: AI can be used to analyse data from
sensors that measure sewer depth and velocity in wastewater pipes. By
analysing changes in patterns in this data, AI can identify potential signs of
blockages and alert operators when an inconsistency in the data is
identified. This can help prevent minor or partial blockages from escalating
to overflows.

 Wet weather overflow forecast: AI can be used to analyse weather data in
conjunction with sewer depth to create a model that predicts when and
where wet weather events are likely to occur based on available rain
forecasts. By combining this with the historical performance of the system
during wet weather events, AI can forecast when and where overflows are
likely to occur. This can help operators prepare for and respond to overflows
more effectively.

 Inflow infiltration characterisation: Statistical models can be used to
compare dry weather data with wet weather profiles to identify sources of
inflow and infiltration (such as leaky pipes or illegal connections) and
estimate their magnitude. Undertaking this analysis in near-real-time can
help operators identify degrading performance and condition of the asset to
support the prioritisation of repairs, renewals and maintenance to reduce
the impact of inflow and infiltration on the system.



Overall, AI, ML and statistical models can be powerful tools for optimising the
operation and maintenance of wastewater systems and reducing the impact of
wastewater on the environment. It can enhance traditional wastewater monitoring
to proactively manage network issues before seeing their impact on the receiving
environment and communities.
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INTRODUCTION

Wastewater overflows represent a critical challenge in modern urban
infrastructure and environmental management. These incidents occur when the
capacity of wastewater systems is exceeded, resulting in the release of sewage
into the environment. Sewer overflows can be related to multiple factors:

 Inflow and infiltration: Inflow and infiltration are generally seen in older,
urbanised and densely populated areas where unwanted stormwater enters
the system. Inflow and infiltration mostly affect combined sewer
infrastructure but are also observed in aging or deteriorated separate
systems. This means that during dry periods and insignificant wet weather,
the systems generally route all sewer flow to the treatment facilities, yet,
when wet weather increases flows, the collection and conveyance systems
are surcharging or overflowing.

 Temporary blockages: Blockages can also cause capacity issues and
overload sewer systems resulting in dry weather overflows and the
discharge of untreated and non-diluted sewer effluent into the receiving
environment.

Wastewater overflows can have far-reaching consequences, affecting public
health, water quality, and the integrity of ecosystems. As urbanisation continues
to accelerate and the impact of climate change results in more frequent and more
intense rainfall events, the risk and recurrence of sewer overflows are set to
increase.

For these reasons, and encouraged by more public awareness around this issue,
water utilities in New Zealand and around the globe have been investing in the
deployment of more IoT sensors capable of detecting overflows and/or measuring
sewer depth and velocity. These sensors are generally linked to an alarming



system set to inform operations teams of an ongoing overflow event, the data
collected is also used for reporting purposes and increasingly being shared with
the public (through platforms such as www.safeswim.org.nz in New Zealand or
www.thameswater.co.uk/edm-map in the United Kingdom).

While the process of monitoring critical overflow locations is not new, there has
been a clear increase in the number of sensors being deployed in recent years.
The volume of data collected and recent advancement in data analysis
technologies mean that enhancing wastewater monitoring with machine learning
has the potential to significantly improve public response and overall
environmental management. This approach can lead to more effective and timely
interventions. This paper details the outcome of a recent trial undertaken to
enhance wastewater monitoring datasets focusing on wastewater blockage
detection, wet weather overflow forecast and inflow and infiltration
characterisation.

TRADITIONAL APPROACH

PREDICTION OF WET WEATHER OVERFLOWS
Traditionally, hydraulic models have been used to predict wet weather overflows.
A hydraulic model is a physical or mathematical representation of a hydraulic
system. These models consider multiple aspects of the drainage network including
asset characteristics, along with their structure, topology, and other determining
factors such as flows from other parts of the network and rainfall.

The interaction between such elements is then consolidated into public or
proprietary software packages, which are then used to simulate flow under
different conditions (Hedges, 1994; Carstensen et al., 1998; Duchesne et al.,
2001; Politano et al., 2007; Grum et al., 2011; Garofalo et al., 2017; Morales et
al., 2017).

Hydraulic models are considered closed-form solutions, which are transparent and
interpretable (Thorndahl et al., 2008; Szeląg et al., 2018). In addition, with the
mechanics clearly defined from the beginning, they do not require abundant data
to calibrate. However, by relying on a static framework, these models become less
flexible when the context or the set of variables changes (e.g., population growth,
GIS updates, new infrastructure, etc). Finally, these models are computationally
intensive, and thus, hard to deploy and maintain (Osiadacz, 1996; Kochevsky &
Nenya, 2004). Their long run time also makes real-time predictions of overflow
difficult, which explains why these models are mostly used for planning and
optioneering purposes.

DETECTION OF BLOCKAGES IN SEWER SYSTEMS
Sewer blockages can occur for various reasons, and often happen unexpectedly.
Some common causes include the buildup of foreign objects in the sewer pipelines
such as grease and fat, sanitary products or sediments, tree roots growth, or
debris related by collapsed pipes.

Water utilities can take several proactive measures to identify sewer blockages
and ensure the smooth operation of their wastewater systems. In particular, CCTV
inspections play an important role in regularly assessing the condition of sewer



lines and associated infrastructure. Monitoring systems are also implemented to
help identify blockages at critical sites and track sewer system performance. Real-
time monitoring is traditionally used to send alarms to sewer operators when
sewer depth exceeds a specific threshold, indicating increased flows that are often
linked to network constraints during dry conditions.

INFLOW AND INFILTRATION CHARACTERISATION
Accurately quantifying and characterising inflow and infiltration (I&I) is crucial for
the proper management and maintenance of wastewater systems and directly
impacts the functionality, efficiency, and cost-effectiveness of sewer networks by
limiting wastewater flow, especially during wet weather events.

I&I studies typically consist of an in-depth analysis of monitoring data. Data
collected from flow monitoring is used to identify an average dry weather flow
(ADWF) pattern. I&I is estimated by subtracting this dry weather flow hydrograph
from the recorded wet weather flow hydrograph (Water New Zealand infiltration
& Inflow Control Manual 2nd Edition, March 2015).

Figure 1:  Wet-Weather Flow Components (Water New Zealand infiltration &
Inflow Control Manual 2nd Edition, March 2015)

High ratios of wet to dry weather, are indicative of high I&I. Correlating flow data
with rainfall data is also essential to characterise I&I. Rainfall data from local
weather stations or rain gauges is used to determine the timing and intensity of
rain events, and these data can be compared with flow data to identify periods of
excessive flow.

I&I studies are computation heavy and are usually carried out on an annual basis
to prioritise catchments and further investigations.

A NEW APPROACH

In the last few years, the water industry across the globe has put a real focus on
reducing wastewater overflows in order to improve community and environmental
outcomes. This can be seen with the development of a new Plan for Water
published in April 2023 by the UK Department for Environment, Food & Rural
Affairs which sets the following targets for water companies (Drainage and



Wastewater Management Plan Alignment to the Storm Overflows Discharge
Reduction Plan, May 2023, SouthWest Water):

Companies are only permitted to discharge from a storm overflow where it can be
demonstrated that there is no local adverse ecological impact, profiled such that:

 75% of storm overflows discharging into or close to high priority sites are
addressed by 2035.

 100% of storm overflows discharging into or close to high priority sites are
addressed by 2045.

 100% of all storm overflows are addressed by 2050.

By 2050, companies will not be allowed to discharge from storm overflows for
more than 10 rainfall events per year.

These targets have resulted in a significant increase in the number of monitors
being installed in the UK, with Anglian water investing in approximately 20,000
sensors for its entire network in the next two years or Thames Water increasing
monitors to up to 18,500 by the end of 2025. The increase in monitoring devices
needs to be combined with the latest technology in data analysis to turn this
dataset into actionable insights and achieve a significant reduction in overflows.

We have combined state-of-the-art technologies in sewer monitoring, hydraulic
engineering, statistics, and computer science to develop solutions maximising
insights from available IoT data to address the above-mentioned issues more
proactively.

The result is an ML and statistics-based methodology that takes minutes to
calibrate and seconds to predict once calibrated, thus allowing for scalable
deployment to 1000’s of sites. In addition, ML and statistical models have been
set up to learn from past data and continually self-calibrate. The speed of the
models allows us to run analysis in near real-time which offers major
improvements to wastewater management by enabling a preventive approach.
We have currently developed and tested our solution across multiple sites in
Auckland, New Zealand where at least 1 year of flow and rainfall data was readily
available. The outcome of the analysis was designed to be integrated with any in-
house or external platform and enable real-time predictions, alerts and
� isualization across any area of interest.

METHODOLOGY

Our system to detect wastewater blockages and forecast wet weather overflow
employs a dual methodology approach, consisting of a forecasting model and a
statistical anomaly detection model that work together in tandem.

WET WEATHER OVERFLOW FORECAST
At the foundation of our system of predictive models is an ML model – trained via
XGBoost, a decision tree-based algorithm – to forecast sewer depth, given inputs
of historical sewer depth and forecasted rain. We trained our models on 5 years
of historical sewer and rain data across 27 sites and use the same model at every
site to predict sewer depth 24 hours ahead. During the training process, we
performed feature transformations appropriate for time series input – we



considered various weighted means and rolling sums of recent rain data as a proxy
for accumulated rain at the moment of prediction, as well as looking at rain
forecasts, and previous values of the sewer depth data, to aid in predicting future
depth values.

With the ML model deployed to the cloud, these predicted forecasts for sewer
depth can be made available in real time. The live forecasts can then be fed into
specialised statistical models to identify anomalous events in the live data.

WASTEWATER BLOCKAGE DETECTION
We opted for a statistical model given the unlabelled nature of historical blockage
events in the dataset, ruling out other supervised ML models for anomaly
detection. In tuning a statistical model, we are better able to build up our
understanding of the model performance and edge cases.

By utilising sewer depth forecasts as an indication of expected depth levels, we
picked up any deviations from this expected depth that are characteristic of
wastewater blockages. We focused on two different profiles of blockages, each
with different detection criteria:

Significant Dry Blockage

 Rolling 12-hour median is significantly larger than the 1-week baseline.
 “Expected Data” predictions are significantly larger than the depth for the

last 6 hours.
 The gradient of the series is not decreasing.
 There has been less than 15mm of rain in the last 24 hours.

Partial Dry Blockage

 The daytime median (7:00am – 9:00pm) is larger than the model predicted
values at this time.

 The night-time median (9:00pm – 7:00am) is smaller than the model
predicted value at this time.

 The gradient of the series is not decreasing.
 There has been less than 15mm of rain in the last 24 hours.

This produces a binary labelled series whether that data is indicative of a blockage.

INFLOW AND INFILTRATION CHARACTERISATION
We created an automated dry day selection application to select dry days
automatically, rather than manually for each gauge. The average dry weather flow
for each day of the week is calculated and updated hourly as data becomes
available. The automated process performs the following tasks:

 Data cleansing: This step includes interpolating data to obtain regular
timesteps, removing outliers from flow data, excluding public holidays,
school holidays and days where missing data exceeds two hours.

 Dry day selection: Selecting dry days based on antecedent wetness
conditions described below:



∑ 0.7𝑑𝑎𝑦𝐷𝑎𝑦=14
𝐷𝑎𝑦=0 × 𝑅𝑎𝑖𝑛 (𝑚𝑚)𝑑𝑎𝑦 < 3.5𝑚𝑚

 Generate ADWF Hydrograph: Calculates the average dry day for each
day of the week, if enough dry days are available or for weekdays and
weekends.

Data is processed hourly and ADWF are updated as new data comes in, looking
back to a maximum period of 1 year.

Once an ADWF hydrograph has been generated an automated storm event
selector uses rain gauge data to identify the start of an event by verifying a set of
rules related to rainfall depth in a specified period of time (e.g., 20mm in 24hours).
The storm event starts when rainfall is greater than 0.5mm and stops when the
observed flow returns within 10% of the ADWF.

Once an event is selected and the ADWF is computed, the RDII for the event can
be calculated. The RDII volume is simply the difference between computed
average dry weather flow and measured flow for a specific time period.

OUTCOMES

WET WEATHER OVERFLOW FORECAST
Our wet weather overflow forecasting model is connected to rainfall predictions to
provide 24 hour forecasted levels and identify the extent of overflows related to
an upcoming rain event.

Our model achieves a mean error of 0.188, or 3.6% of the depth range. Practically,
this means that (after accounting for anomalies in the dataset) our model is on
average about 3.6% away from the true value. This isn’t uniformly distributed as
the model accuracy depends on the behaviour of the gauge.  We have trained the
model such that it maintains performance across these metrics when we filter for
overflow events. Ultimately, we have found that the model can predict when
overflow events will happen to within the hour ~91% of the time, alerting users
24-hours in advance when this is predicted.

Figure 2:  Wet weather sewer level prediction



WASTEWATER BLOCKAGE DETECTION
The blockage identification trial returned the following results:

 74.0% precision on all data (2096 out of 2831 model labelled points were
during an event). Example shown in Figures 3 and 4 below.

 78.7% precision on all data when removing gauge with many negative
values (1925 out of 2445 model labelled points were during an event)

 44.6% recall on event data (at least one anomalous value raised in 50 out
of 112 labelled events)

These results show that the model was effectively trained to reduce the number
of False Positive events. The recall is acceptable for a sample this small but will
be the focus for improving the model. With access to labelled data, more complex
models could be trained to further improve the performance of the model.

Figure 3:  Positive Detection of Significant Blockage Event. Detection is shown
in red. Successfully detected due to increase in actual depth (compared to

predicted depth in red) outside of a rain event.

Figure 4:  False Positive Detection Example. Detection is shown in red.
Unsuccessful detection caused by difference between the median depth and

predicted depth.



INFLOW AND INFILTRATION CHARACTERISATION
The selection of dry weather days and automated calculation of ADWF was tested
for over 50 temporary gauges in the Auckland area and returned satisfactory
results. The ADWF was checked by wastewater modellers as part of Watercare’s
Network Performance Monitoring and Modelling who used automated dry weather
flows as part of their projects. This process has increased efficiency and
consistency in the calculation of ADWF.

Figure 5:  Automated dry weather day selection and ADWF calculation.

 The RDII volumes automatically generated can already be used to prioritise high
II catchments. We are currently improving our storm event detection to better
define the end of events for long term events. These improvements include:

 discarding events which do not get back within 10% of ADWF before the
next rain event occurs,

 ending an event when flow gets back within 10% of the closest dry day
(instead of ADWF) to consider dry weather seasonality.

Another step for improvement will be to consolidate all identified RDII events and
compile them in a tabular format and or geospatial layers to return the following
key indicators:

 Groundwater Infiltration (GWI) Volume
 Dry Weather Flow Production
 Peaking Factor
 Percentage Ingres (II Volume / (Catchment Area * Total Rainfall)
 Leakage Severity (II Volume / Length of Pipe / Total Rainfall)

CONCLUSIONS 

The water industry has recently intensified its efforts to mitigate wastewater
overflows in both wet and dry weather conditions, aiming to protect public health
and the environment. This heightened focus, accompanied by more stringent



targets, has driven a substantial investment in IoT devices for monitoring sewer
depth, flow, and overflow incidents at constructed sewer overflows.

This surge in the number of monitoring devices deployed must now be harnessed
in conjunction with recent technological advancements, including machine
learning, statistical analysis, and cloud computing, to elevate the effectiveness of
wastewater monitoring and optimise return on investment. The trial carried out in
Auckland has demonstrated that technology can be leveraged to automate early
blockage detection, to provide predictive overflow analysis, and to support data-
driven decision-making and prioritise inflow and infiltration remediation efforts.

The next phase in this journey involves refining ML and statistical models as more
training data is captured and feedback is received from operational teams. This
step is critical to enhance system performance and the accuracy of the proposed
solutions, thereby increasing their reliability and effectiveness, ultimately
maximising the benefits of wastewater monitoring.

While technology will play a pivotal role in reducing overflows in the foreseeable
future, it is important to acknowledge the inherent complexity of this challenge.
Effective solutions will necessitate a collaborative approach, drawing upon
multidisciplinary resources such as planning teams to expand network capacity,
asset management teams to renew and maintain aging infrastructure, and
operations teams to address unforeseen blockages. In this context, the
prioritisation of issues and the real-time sharing of critical insights among relevant
stakeholders will also be paramount to successfully reducing overflows and
mitigating their impact.
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