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NITRATE POLLUTION IN NEW 
ZEALAND

Secondary domestic 
wastewater effluent can 
be in excess of 40 mg N/L 
[2] 

629% increase in nitrogenous 
fertilizer use (1991-2019) [1]

Worsening groundwater 
quality [3]



IMPACTS OF NITRATE POLLUTION

Health 

• toxicity to humans 
(cancer) [5]

• blue baby syndrome [5] 

Environmental

• Eutrophication [4] 



TRADITIONAL WASTEWATER 
DENITRIFACTION

Pre-anoxic approach
- Influent organic carbon drives denitrification
Disadvantages
- Energy intensive recycle
- Incomplete nitrate removal and nitrous oxide 

production

Post-anoxic (polishing process) 
- External organic carbon drives denitrification
Disadvantages
- Overdosing cause carbon carryover
- Underdosing results in nitrous oxide production 
- Organic carbon oxidation produces carbon dioxide 



GREENHOUSE GAS EMISSION 

Nitrous oxide is 300 times more potent at warming the 
atmosphere than carbon dioxide [7]

Denitrification in wastewater treatment results nitrous oxide
and carbon dioxide production [6]



HYDROGEN DRIVEN DENITRIFICATION

• bacteria consume carbon dioxide 
for growth 

• bacteria consume hydrogen gas for 
energy generation

• works well in organic carbon deficient 
zones (post-anoxic)

• Reduces nitrous oxide emissions [8]

• Lower growth rates [9]

AUTOTROPHIC PROCESS



HYDROGEN WASTEWATER TREATMENT 
PROCESS
Solubility of Hydrogen in water is 1.6 mg H2/L [10]  

Efficient and safe hydrogen delivery

• Attached growth process  H2 permeates 
through membrane into biofilm

• Improves H2 efficiency and utilization rate

• Reduces H2 accumulation in head space  limits 
explosive hazards



RESEARCH OBJECTIVES

Investigate the presence of indigenous hydrogenotrophic 
denitrifying bacteria in New Zealand wastewater treatment plants 

Enrich these indigenous New Zealand bacteria in a novel 
continuous process suitable for wastewater treatment 



METHODOLOGY: Presence of h2 oxidizing bacteria

Monitor nitrate reduction 

Provide nitrate and hydrogen  selectively 
enrich bacteria that can use these compounds
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Rosedale WWTP
Mangere WWTP
Army Bay WWTP

• Hydrogenotrophic bacteria are 
present at all three tested 
WWTPS

• Indigenous hydrogenotrophic 
can be used to perform efficient 
denitrification 

Results: Presence of h2 oxidizing bacteria

171.5 mg N/L·d

522.1 mg N/L·d

562.7 mg N/L·d



• Enable growth and 
accumulation bacteria

• Hydrogen provided through 
direct diffusion into biofilm 

• Nitrate concentrations 
maintained between 50 - 150 
mg N/L

METHODOLOGY: Bioreactor start-up

BATCH PROCESS 



0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8

N
itr

at
e 

co
nc

. (
m

g 
N

/L
)

Time (Day)

• The reactor was successfully 
started-up could perform 
nitrate removal from day one 

• The membrane could 
effectively provide 
hydrogen through bubbleless 
permeation into a biofilm

Results: Bioreactor start-up



• Operated with a synthetic 
nitrate-amended wastewater

• Magnetic stirring and nitrogen 
sparging manage biofilm 
growth and accumulation

• HRT can be adjusted 

METHODOLOGY: Novel bioreactor schematic 

CONTINUOUS PROCESS 



METHODOLOGY: Novel bioreactor and biofilm

• 20-liter continuous 
reactor with two hollow 
fiber membrane 
modules

• Thick biofilm formation 
at the top of the 
membrane 

• Biofilm was thicker 
closer to the top, and 
the hydrogen source



Results: Novel bioreactor stabilization and operation
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• Numerous changes were 
made during stabilization
(HRT, mixing, sparging)

• The performance of the 
seeded reactor significantly 
improved across a 30-day 
period   

• The reactor stabilized above 
an 85% removal efficiency

Room temp
65 mg N/L

32 °C
100 mg 
N/L

STABILISATION OPERATION



0

10

20

30

40

50

60

70

80

90

100

9 14 19 24 29 34 39

N
itr

at
e-

N
itr

og
en

 re
m

ov
al

 p
er

ce
nt

ag
e 

(%
)

Time (Day)

• During stabilization, biofilm 
growth and the accumulation of 
hydrogenotrophic biomass was 
still in a key phase 

• Excess bubbling and mixing 
limited  biofilm growth and
accumulation

After the stabilization period, 
the removal rate was in excess 
of 70% 

Results: Novel bioreactor stabilization

N2 1.5 L/min

200 rpm mixing

HRT = 24 hrs

N2 off 

150 rpm mixing

HRT = 43 hrs
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• Peak removal percentage was 
99.3%

• Peak specific removal rate was 
55.2 mg N/L·d

• Relative to the volume and 
surface area, the removal rate 
was 367.7 mg N/m2·d

The novel process could meet 
nitrate wastewater discharge 
regulations

Results: Novel bioreactor operation



CONCLUSION

Indigenous strains of hydrogenotrophic denitrifiers are 
present in New Zealand Wastewater treatment plants

Hydrogenotrophic denitrifiers can be seeded in a novel 
bioreactor  

Indigenous New Zealand hydrogenotrophic denitrifiers have 
the potential to meet wastewater discharge standards



FUTURE WORK

FUTURE DEVELOPMENTS 
• reduce startup and stabilization 

time

• Optimise the denitrification process

• Use carbon dioxide to manage pH 
and as a carbon source

FUTURE APPLICATIONS 
• carbon dioxide sequestration

• non-point source treatment system



ACKNOWLEDGMENTS 

I would like to thank Dr. Wei-Qin Zhuang, Dr. Shan Yi,

Mr. Rob Fullerton for there guidance and mentorship I

would also like to thank the Warwick and Judy Smith

Endowment Fund (ENG-2022-01W-Zhuang) for their

generous support and thanks to thank Ms. Kimberly

Murphy, Michaela Strong, Emma Tyson, and Mr. Kobe

Daniel for their contribution to the project.



THANK YOU 
ANY QUESTIONS? 



REFERENCES
[1] Stats N. Fertilisers – nitrogen and phosphorus Stats NZ: Stats NZ; 2021. Available from: https://www.stats.govt.nz/indicators/fertilisers-
nitrogen-and-phosphorus#:~:text=Between%201991%20and%202019%2C%20estimates,in%20nitrogen%20applied%20from%20fertiliser.

[2] Cao S, Du R, Peng Y, Li B, Wang S. Novel two stage partial denitrification (PD)-Anammox process for tertiary nitrogen removal from low 
carbon/nitrogen (C/N) municipal sewage. Chemical Engineering Journal. 2019;362:107-15.

[3] MfE. Pollution from our activities: Ministery for the environment; 2019 [cited 2023]. Available from: 
https://environment.govt.nz/publications/environment-aotearoa-2019/theme-3-pollution-from-our-activities/

[4] Ashok V, Hait S. Remediation of nitrate-contaminated water by solid-phase denitrification process-a review. Environ Sci Pollut Res Int.
2015;22(11):8075-93.

[5] Lockhart K, King A, Harter T. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly 
diversified intensive agricultural production. Journal of contaminant hydrology. 2013;151:140-54.

[6] Chung Y-C, Chung M-S. BNP test to evaluate the influence of C/N ratio on N2O production in biological denitrification. Water Science and
Technology. 2000;42(3-4):23-7.

[7] EPA USEPA. Overview of Greenouse Gases: United States Environmental Protection Agency; 2023. Available from:
https://www.epa.gov/ghgemissions/overview-greenhouse-gases

[8] He Y, Li Y, Li X, Liu Y, Wang Y, Guo H, et al. Net-zero greenhouse gas emission from wastewater treatment: Mechanisms, opportunities and
perspectives. Renewable and Sustainable Energy Reviews. 2023;184:113547.

[9] Zhang, R.-C., Xu, X.-J., Chen, C., Xing, D.-F., Shao, B., Liu, W.-Z., Wang, A.-J., Lee, D.-J., & Ren, N.-Q. (2018). Interactions of functional
bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification. Water Research, 143, 355-366

[10] Park JY, Yoo YJ. Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose. Applied Microbiology
and Biotechnology. 2009;82(3):415-29.

https://www.stats.govt.nz/indicators/fertilisers-nitrogen-and-phosphorus#:%7E:text=Between%201991%20and%202019%2C%20estimates,in%20nitrogen%20applied%20from%20fertiliser
https://www.stats.govt.nz/indicators/fertilisers-nitrogen-and-phosphorus#:%7E:text=Between%201991%20and%202019%2C%20estimates,in%20nitrogen%20applied%20from%20fertiliser
https://environment.govt.nz/publications/environment-aotearoa-2019/theme-3-pollution-from-our-activities/
https://www.epa.gov/ghgemissions/overview-greenhouse-gases


APPENDIX



NO3
- + 3.03H2  + H+ + 0.229CO2  0.046C5H7O2N + 0.477N2 + 3.37H2O

HYDROGEN CONSUMPTION 
AND BIOMASS PRODUCTION

HYDROGENOTROPHIC DENITRIDICATION

• 1 kg of nitrate removed
• 0.43 kg of hydrogen gas consumed
• 0.37 kg of biomass produced
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