

Jiabao Wendy Qi

THE ROLE OF SULFUR-DRIVEN AUTOTROPHIC DENITRIFICATION IN SUSTAINABLE WASTEWATER TREATMENT

The University of Auckland

Presenter Introduction

Three Waters Engineer:

Wastewater, Water and Stormwater

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Tatina. Te Wanganui-a Farr Willington

01 Introduction and Background

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Thina, Te Wanagani-a Tara Williaton

The Importance of Nitrogen Removal

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Takina, Te Winganui-2 Tara Wellington

Conventional VS Autotrophic Denitrification

The selection of electron donors

- 1. Hydrogen gas H₂
- 2. Reduced inorganic sulfur compounds (S⁰, FeS)
- Common and abundant in the environment
- Safe
- Low cost

Zhang, Q., et al. (2022). "Recent Advances in Autotrophic Biological Nitrogen Removal for Low Carbon Wastewater: A Review." <u>Water</u> **14**(7): 1101.

Challenge in Sulfur-driven Autotrophic Denitrification (SdAD)

- Proton generation, reduce pH and alkalinity consumption
- pH inhibition occurred below pH 6.
- Low-cost, low carbon footprint pH buffers need to be explored.

 $S + 0.876 NO_3^- + 0.343 H_2O + 0.023 CO_2 + 0.08 NH_4^+ + 0.379 HCO_3^-$ = 0.08 C₅H₇O₂N + 0.44 N₂ + SO₄²⁻ + 0.824 H⁺

02 Materials and Methods Methods

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Tstina, Te Waragami-Tara Wellington

Innovative pH Buffering Materials

New Zealand Green-lipped mussels' shell (GLP) Sulfur composite (S^0 + FeCO₃) granular packing media material

Assessing the performance and efficiency of insoluble chemicals as pH buffers.

Batch Tests:

- Collection of return activated sludge (RAS) samples from Mangere WWTP, Rosedale WWTP and Army and Army Bay WWTP.
- Nine bottle were setup use of different pH buffers.

NO.	WWTP Sludge	pH buffer	Note
RD 1	Rosedale	NaHCO ₃	control reactor with a soluble alkalinity
RD 2	Rosedale	mussels shell	Sustainable alkalinity
RD 3	Rosedale	sulfur composite granular packing media material	(S ⁰ -Composite)
MG 1	Mangere	NaHCO ₃	control reactor with a soluble alkalinity
MG 2	Mangere	mussels shell	Sustainable alkalinity
MG 3	Mangere	sulfur composite granular packing media material	(S ⁰ -Composite)
AB 1	Army Bay	NaHCO ₃	control reactor with a soluble alkalinity
AB 2	Army Bay	mussels shell	Sustainable alkalinity
AB 3	Army Bay	sulfur composite granular packing media material	(S ⁰ -Composite)

03 Results and Discussion

Ubiquity of Sulfur-Driven Autotrophic Denitrifying Bacteria

- SdAD happened in all three WWTPs.
- No acclimatization needed.
- New SdAD treatment units in the future can be self-seeded.

	average NO ₃ -N removal rates (mg/L·d) within the first 24-hr incubation	pH on Day 1 (NaHCO ₃)
MG	143	6.30
RD	1,073	6.63
AB	419	6.49

Sustainable Insoluble Buffer – NZ Green-lipped Mussels

Denitrification test results using Mangere WWTP sludge and **NaHCO₃** as pH buffer.

Denitrification test results using Mangere WWTP sludge and **GLM** as a pH buffer.

Sustainable Insoluble Buffer – NZ Green-lipped Mussels

- Denitrification performance with different WWTP sludges and GLS as the sustainable pH buffer.
- 30,000 tones shells can be reused and save 5 million NZD per year.

Sulfur Composite Media

Nitrate concentrations using Army Bay WWTP sludge with buffer of NaHCO₃, shell and the sulfur composite granular packing media material.

Denitrification Performance with High Salinity (3%)

Mussel Shell buffer systems and their respective nitrate, nitrite concentrations for three WWTPs.

S₀-composite systems and their

respective nitrate, nitrite concentrations for three WWTPs

Continuous Up-Flow Packed-Bed (UFPB) Reactor

04

Conclusions

- Effectiveness of pH buffers in SdAD.
 SdAD.
- Green-lipped mussel shells and sulfur composite granular packing media sustainable alternative.
- Widely present sulfur-driven

autotrophic denitrifiers in WWTPs.

Acknowledgments

- Thanks to the University of Auckland for the Ph.D. scholarship. Thanks to my supervisor Dr. Wei-Qin Zhuang.
- Funding from NIWA-led MBIE contract and Warwick and Judy Smith Engineering Endowment Fund
- Institute of Environmental Science and Research, Christchurch, New Zealand

Water water water and the value of the value

THE END

