

Sewer Symphony – An investigation of Hydraulic Phenomena in a falling main through acoustics

Presenter: Joe Allen (Jacobs)

Photo Credit: Colin Monteath

Agenda

LWW Scheme Overview Hydraulic Challenges of Open Pipe **Pinch Valve Station Overview Testing and Investigations** Hypothesis and Likely Cause **Control Solution Conclusions** Questions

Acknowledgements

Patrick Cantillon Jess Carruthers

Laurence Da Silva Darath Ng

Jacobs

Kevin Neilson Daniel Morse Doug Franklin Bruce Lade

LWW Scheme Layout and Description

Hydraulic Challenges of Open Gravity Main

Pinch Valve Station

Elevation

Plan

Commissioning Challenges....

Overflow Capture

Viewing Port

Testing Plan

Initial Testing
Verify Key Design Factors

2. Discovery Testing What effect variables had Learn about the issue

3. Investigation TestingFocus on specific variableInform the solution

4. Acceptance Testing

Prove the Solution

Initial Testing

Objectives

- Verify the hydraulic performance of the transition chamber
- Verify pump flow rates at selected pump speeds against the design basis

What was going on?

Critical Analysis from Initial Testing

Where could it be??

If we can't see it... Can we hear it??

Ground Microphone

Focused on Upper Steep Section

Theoretical assessment of upper steep section Suggested issues should not occur

Hydraulic Features of the Steep Upper Section

Discovery Testing – What can we Learn?

Changed

Starting Pinch Valve position

Pipe full level

Acoustic Sensing

tic Useful/reliable to identify free surface

Used under a variety of operational conditions

Didn't work as intended

Lack of additional noise at bends

No hydraulic jumps/Air lock at these features

Investigation Testing - Focus on Key Areas

Objectives

- Characterise/Locate Hydraulic Blockage or Flow Bulking
- Bends suspected of being significant

Development of Testing

- Broke pipe into segments
- Reduce Variables:
 - Constant Pump Flowrate
 - Valve Closed
 - Varied pipe full level

Investigation Testing

Objective

- Determine if flow bulking was occurring
- Isolate specific locations where it was occurring

Observations

- CH000 115 16% (11.25° Bend)
- CH115 273 267% (35° Bend)
- CH273 450 168% (LR Bend)
- CH450 660 136% (45° Bend)

Revised Operational Control

- Pinch Valves changed from Normally Closed to Normally Open
- Implemented a periodic scouring cycle
- Introduced scouring operational mode at Simeon Quay PS
- Included communications between Pinch Valve and Simeon Quay PS
- Established preconditions for initiating a Scour Cycle

Acceptance Testing

Peak Design Flowrate Steady State Test (Open Pipe) Dry Weather Operation (Open Pipe) Operational Handover Operational & Wet Weather Proving

Account for flow bulking at peak design flow Inform Scour Frequency Recommission under revised operational philosophy Prove reliability of revised Control Philosophy

Peak Design Flow Steady State Testing (Open Pipe)

Dry Weather Operation (Open Pipe)

Operational & Wet Weather Proving

Conclusions

 \bigcirc

Theory indicated low risk of hydraulic issues

Overflows caused by flow bulking due to entrained air

Peak design flowrate sustainable without overflow (with flow bulking)

Demonstrated reliability of revised operational mode during both dry and wet weather

Solution involved changes to automation software only

Original intent of the Pinch Valve Control was maintained

Added benefit of reduced valve movements = longer valve life

Copyright notice

Important

The material in this presentation has been prepared by Jaco®s

All rights reserved. This presentation is protected by U.S. and International copyright law Reproduction and redistribution without written permission is prohibited. Jacobs, the Jacobs logo, and all other Jacobs trademarks are the property of Jacobs Engineering Group Inc.

Jacobs is a trademark of Jacobs Engineering Grouphc.

Thank you

Questions?

