Polyethylene Pipe Standards are Changing ~ the Critical Implications for the Water Industry

Presented by PIPA NZ

Who we are

Background

Representing all the stakeholders in polyolefin pipe material supply, manufacture, fusion, and fusion equipment supply

> WE advocate in standards development and training & education programmes

POLYETHYLENE PIPELINES INDUSTRY GROUP

Monarcey

by aliaxis

by aliaxis

INTERPLAS

Agencies Limited

*i***PL***ex Pipelines*

PS= +GF+

> HÜRNER SCHWEISSTECHNIK NEW ZEALAND

> > 2

Mission Statement:

"leading the correct specification and installation of polyethylene pipe systems"

Activities so far

 2017 Conference: Paper in Trenchless Stream and to Water Service Managers Group

• 2020 Conference: New Generation PE100 paper delivered to Trenchless Stream

• 2021 Lobbying against Standards Dejointing

ch 2021 arker, CEO Z ind's Industry Association <u>astics.org.nz</u>

ns of standards de-jointing

velopment of a NZ Polyethylene Industry Group and sociated Certificate of Competency for PE Fusion

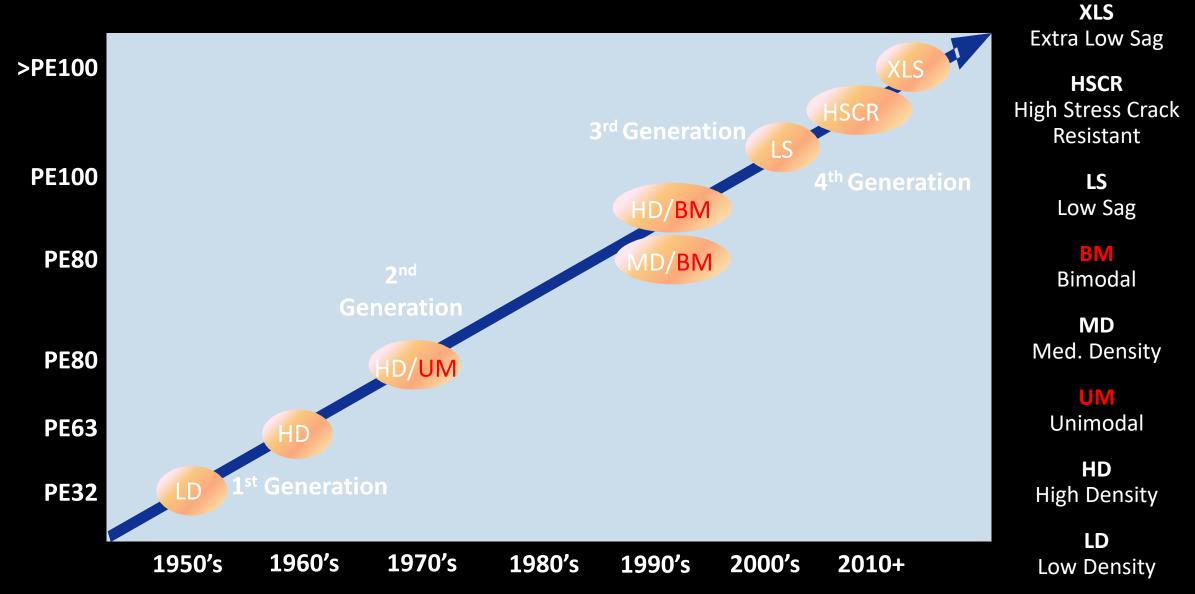
STANDARD NEW ZEALAND

Post to: PO Box 1473, Wellington 6140 Deliver to: 15 Stout Street, Wellington 6011 Phone: +64 3 943 4259 Email: enquires@standards.govt.nz Web: www.standards.govt.nz

N

pe

Polyethylene is...



Central to Water NZ's Pipeline Resilience Strategy

The optimum pipeline material for Trenchless Operations

Corrosion Free, Flexible, Durable, Seismic Resistant, Maintenance Free

We have been using it for 70 years

Product innovation over the journey

Properties	1960' s	1970' s	1980' s	1990' s	2000' s
MRS Classification	PE63	PE80		PE100	PE100 (HSCR)
Density	High Density (1 st Gen)	High Density (2 nd Gen)	Medium Density	High Density (3 rd Gen)	High Density (4th Gen)
Slow crack growth by Notched Pipe (ISO 13479)	800 kPa ~50 hrs	800 kPa >165 hrs	800 kPa >500 hrs	920 kPa >500 hrs	920 kPa >5000 hrs

Growth in the size of extruded PE pipes using vacuum calibration

Q	Ŏ	0	Ó	\bigcirc		
1960's PE63 125mm OD	1970's PE80 315mm OD	1980's PE100 1000mm OD	1990's PE100 1400mm OD	2000's PE100+ 2000mm OD	2014 PE100 HSCR 2500mm OD	2020 PE100 HSCR/ Extra Low Sag 2800mm OD

Pipe Standards Evolved this Millenia

ISO 4427: 2007

ISO 4427: 2019

PE100	PN10	PN8	PN6	PN5	PN4	PE100	PN10	PN8	PN6	PN5	PN4
Nominal OD	SDR17	SDR21	SDR26	SDR33	SDR41	Nominal OD	SDR17	SDR21	SDR26	SDR33	SDR41
	Wall thickness [mm] = e (max)					OD	Wall thickness [mm] = e (max)				
1800	116.6	94.4	76.2	60.1	48.3	1800	116.6	94.4	76.2	60.1	48.3
2000	129.5	104.9	84.7	66.8	53.8	2000	129.5	104.9	84.7	66.8	53.8
2250	-	-	-	-	-	2250	-	118.1	94.8	75.9	60.7
2500	-	-	-	-	-	2500	-	131.2	105.2	84.3	67.5
2800	-	-	-	-	-	2800	-	146.9	117.8	94.4	75.5
3000	-	-	-	-	-	3000	-	157.3	126.2	101.1	80.9

New PE100 Moulding Compounds

- Now possible to mould one piece
 DN630 90 degree Elbows
- Eliminates Fabricated Sectional de-rated bends

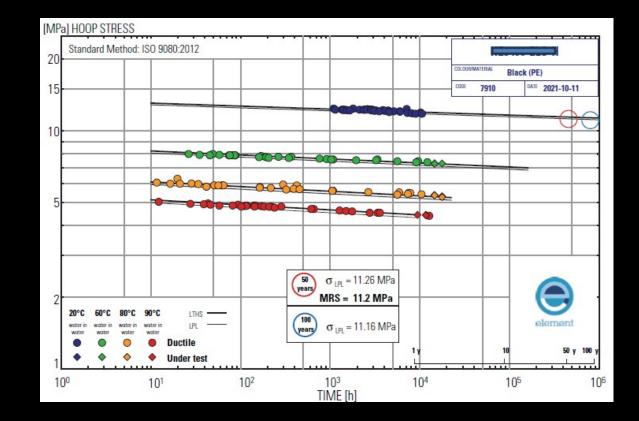
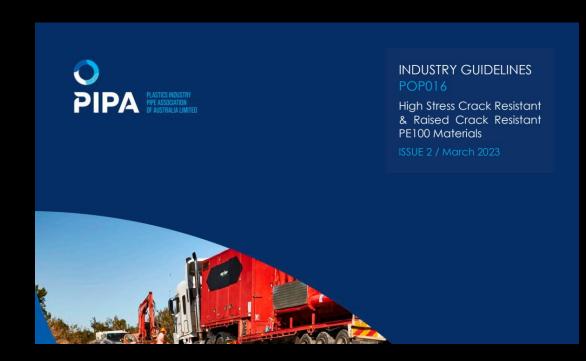

Polymer Compounds Enabling new Dimensions

Image courtesy of PS Engineeriing


Higher Hoop Stress PE100 Compounds Now Available

- MRS of 11.2 MPa
- Increased Factor of Safety for design

PE100-RC now defined in Standards

- BS EN 1555-2:2021 "Plastic Piping Systems for the Supply of Gaseous Fuels"
- BS EN 12201-2:2011 "Plastic Piping Systems for Pressure Water Supply" is next for redrafting
- <u>www.pipa.com.au</u> POP004 Technical Guidelines lists qualified materials, while POP016 defines the parameters

AS/NZS Development

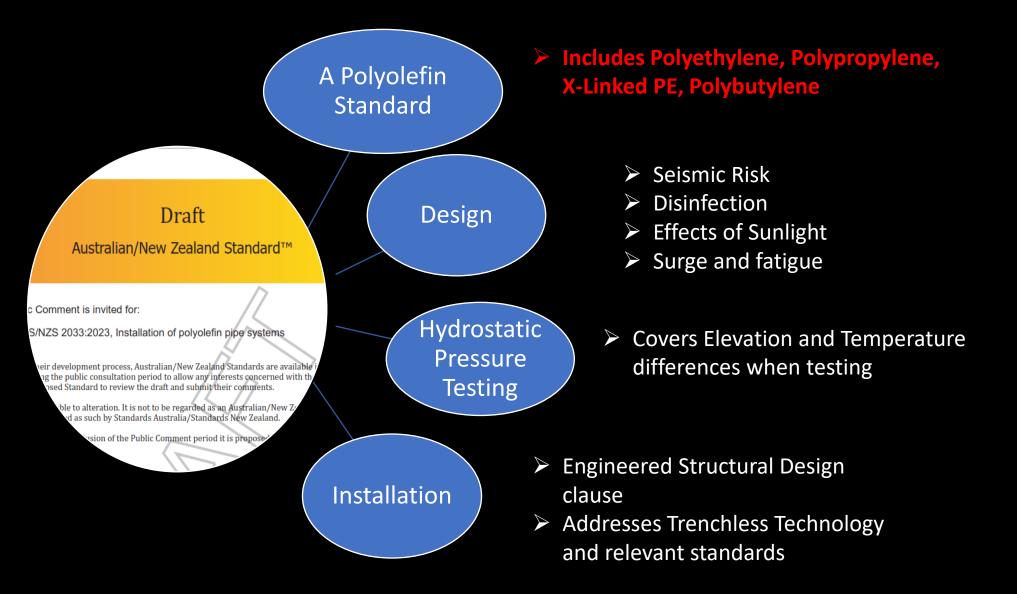
Significant changes proposed from the 2008 version

DR AS/NZS 2033:2023

Draft

Australian/New Zealand Standard™

Public Comment is invited for:


DR AS/NZS 2033:2023, Installation of polyolefin pipe systems

During their development process, Australian/New Zealand Standards are available in draft form during the public consultation period to allow any interests concerned with the application of the proposed Standard to review the draft and submit their comments.

This draft is liable to alteration. It is not to be regarded as an Australian/New Zealand Standard until finally issued as such by Standards Australia/Standards New Zealand.

Upon successful conclusion of the Public Comment period it is proposed to publish this Standard as AS/NZS 2033:202X.

Some of the major changes in the Draft

The most significant change...

Draft

Australian/New Zealand Standard™

c Comment is invited for:

S/NZS 2033:2023, Installation of polyolefin pipe systems

teir development process, Australian/New Zealand Standards are available in the public consultation period to allow any interests concerned with the psed Standard to review the draft and submit their comments.

ble to alteration. It is not to be regarded as an Australian/New Z/ vd as such by Standards Australia/Standards New Zealand.

vsion of the Public Comment period it is proposed

Section 5: Jointing Requirements Competency and Training is stipulated for Fusion Jointing

Section 5: Jointing

In Australia, the competent person shall have completed PMBWELD 301/ 302 training within the last three years.

In New Zealand, the competent person shall have completed PMBWELD 301 / 302, or other training approved by the relevant authority, (e.g. US31524, US31525 & US31532 by NZQF) within the last three years.

Current Training is Ad-hoc

May or may not be in accordance to Unit Standards

Lacks graduation by size & SDR

Little or no field assessment and Supervision

Pipeline Construction & Maintenance

Level 4

QNZQA #3858 9160 Credits | 25 Months

Recognition for constructing large scale pipelines essential for the supply of freshwater and wastewater.

connexis.org.nz

NEW ZEALAND

Elective strands of Level 4 Diploma include 33 credits for Fusion Jointing available as Microcredentials

There are no shortcuts:

Operators who do not conform to these training requirements should not be performing fusion joints

The Implications to The Industry

PROOF OF TRAINING

IS IT CURRENT

HISTORY OF COMPETENCY

What does competency look like

DR AS/NZS 2033: 2023 specifies that all weld samples are to demonstrate ductile fracture behaviour and strength of not less than 90% of the parent pipe

A field fusion QA plan shall be submitted and approved before jointing commences

Examples of Competency...

Image courtesy of Iplex NZ

lmage courtesy of Iplex NZ

Examples of Competency

Image courtesy of Iplex NZ

Fusion Practice records

- Ultimately "Competency" will need to be recorded
- Welding Practitioner registration is inevitable
- AS/NZS 2033 is a critical standard adherence to the proposed changes will drive collaboration among all stakeholders

ISO13953 preparation

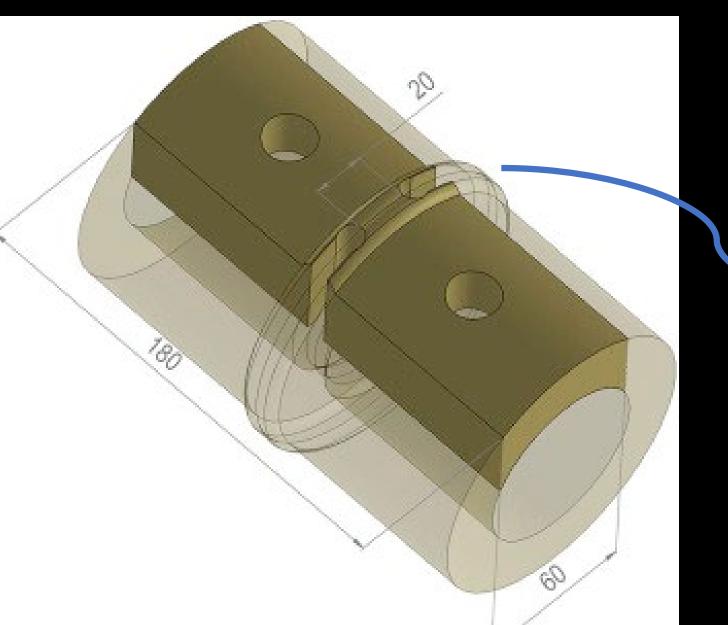


Image courtesy of Waters & Farr

DUCTILE

BRITTLE FAILURE

Ductile



Brittle

Interpreting Ductile Failure

- A Load vs Extension graph will show a visually clear distinction between brittle and ductile outcomes
- This distinction can be difficult to determine from visual inspection of the weld surfaces alone

The Costs of Incompetence...

And where do we see it?

What Electrofusion Faults Look Like

What A Fusion Bead Fault Looks Like

What Faulty Technique Looks Like

Images courtesy of Iplex NZ

What Dangerous Technique Looks Like

Images courtesy of Iplex NZ

We all want Safe and Enduring Infrastructure...

We all have a part to play in getting there
Designers
Pipe Makers
Installers
Supported by correct training and trade practise

Adherence to newly evolving Standards will be a critical part of the journey.

End of presentation

Thanks for listening – any questions