

Nilakshi Dissanayake, Michael J Cee, Mark Lay, Lee Streeter, Graeme D.E. Glasgow

USING FLUORESCEIN AS A FLUOROPHORE TO TEST UV AND LIGHT PENETRATION OF FLOCCULATED PARTICLES

School of Engineering University of Waikato

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Tākina, Te Whanganui-a-Tara Wellington

Water treatment – raw water

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023

Pathogen log removal

Challenging situations

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Takin, Te Whanganu-s-Ter 2 Wellington

NEW ZEALAND

The New Zealand Water & Wastes Association Wainra Antea

Particle count going through UV treatment

■2-5 um ■5-10 um ■10-15 um ■15-25 um ■> 25 um ■

Challenges for UV treatment

Particles containing/shielding pathogens

Cryptosporidium 4-6 µm – chlorine resistant - 12 mJ/cm2 Giardia 10-14 µm - 11 mJ/cm2 Entamoeba histolytica 10-20 µm Coliforms 1-2 µm Viruses 143 mJ/cm2 Particulate material can be strongly UV absorbing e.g. humic substances, organic substances Particulate material can be UV reflecting e.g. silicate material

Examples of shielding in UV treatment

UV disinfection effectiveness is reduced with organic particle sizes 2 μm and smaller

[Templeton et al. (2005)]

UV light incapable of inactivating coliform bacteria protected by particles as small as 11 μm

[Cantwell and Hofmann (2008)]

Aggregated *Escherichia coli* (*E. coli*) and particle sizes larger than 25 μ m reduces the inactivation of *E. coli*

[Kollu and Örmeci (2012)]

How to measure UV penetration in floc?

Can any information about the floc and what is in it be obtained?

One approach to measuring light penetration is using fluorescence

Want I need

Need a fluorescent probe

e.g. quantum dots or fluorescent dyes that can easily incorporated into floc

Ideally something that emits light at a higher wavelength that the wavelength used to induce fluorescence

Ideally something whose fluorescence lifetime changes depending on what it is attached to

Need a set-up that can easily measure fluorescence

Need a set-up that can measure fluorescence lifetime to give information about the floc

Fluorescein as a fluorescence probe

[Le Guern et al, 2020]

Fluorescein emission

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Takina, Te Wataganu-3-Tara Wellington

Using fluorescence to measure light penetration

Light source

* * *

Detector

- Fluorescence Intensity base
- Fluorescence Lifetime based

Examples of using fluorophores

Fluorescent probes to detect different pathogens in environmental and medical studies.

[Key et al., 2009; Singh et al., 2016]

Fluorescent microparticles were substituted as Cryptosporidium parvum to test the efficiency of a metallic membrane in drinking water treatment.

[Li et al., 2019]

Modified microspheres to study pathogen transport in ground water.

My prototype for measuring fluorescence and lifetime

Data obtained

Need to get the fluorescein into floc, ideally without changing floc properties

Made humic acid and kaolin floc using alum as a flocculant

Samples flocculated in a boltac jar tester

Examined the effect of humic acid, kaolin, alum and fluorescence concentrations at native pH and pH 7 on:

Turbidities, particle sizes, floc morphology and fluorescence

Particle size of the floc

Unbuffered flocculated solutions at different concentrations of humic acid and kaolin and 0.48 mg/L fluorescein and alum dose adjusted according to solution concentration and zeta potential measurements.

Particle size of the floc

Buffered flocculated solutions 60 mg/L humic acid and kaolin solutions at different fluorescein concentrations and 20 mL 1g/L alum to 400 mL humic solution and 14 mL for kaolin solution.

Floc morphology

Microscope images (20x magnification)

Kaolin floc particles 20 mg/L unbuffered with 0.48mg/L fluorescein.

Humic acid floc particles (a) 20 mg/L, (b) 40 mg/L, (c) 60 mg/L and (d) 80 mg/L, unbuffered with 0.48mg/L fluorescein.

wai

pH measurements different fluorescein concentrations

Fluorescein concentration (mg/L)

Turbidity of 60 mg/L humic acid and kaolin solutions at different fluorescein concentrations

Fluorescence emission data for flocculated solutions containing different concentrations of fluorescein in 60 mg/L of humic acid

Fluorescence emission data for flocculated solutions containing different concentrations of fluorescein in 60 mg/L of kaolin

Water New ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Takina, Te Wanganui-a-Tara Wellington

Fluorescein adsorption

NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023

Fluorescein adsorption

NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023

CONCLUSION

We have an experimental set up to measure the fluorescence lifetime and intensity from floc

But fluorescein changed floc morphology from a dense spherical floc to a flat non-spherical shape and also did not like to stick to the floc

Need an alternative fluorophores or modify the fluorophore to measure floc penetration

e.g. by chemically grafting it to a particle

THANK YOU

EEM measure for different concentration of humic acid

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Takina, Te Wedngarui-a-Tara Wedlington

EEM measure for different concentration of Kaolin

Material concentration (mg/L)

Fluorescence emission data for flocculated solutions containing different concentrations of fluorescein in 60 mg/L of humic acid

Fluorescence emission data for flocculated solutions containing different concentrations of fluorescein in 60 mg/L of kaolin

Water New ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Takina, Te Wanganui-a-Tara Wellington

EEM MEASURE FOR DIFFERENT CONCENTRATIONS

