

Abhi Ganugapati

THE CASE FOR INVESTING IN CLIMATE RESILIENCE APPLICATION OF A DYNAMIC DECISION TOOL

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Täkina, Te Whanganui-a-Tara Wellington

01

The Challenge | Investing in Climate Resilience

The need in the face of a changing climate, current approaches and their challenges

Case Study | Flood Resilience Dynamic Decision Model

Investment in flood resilience at a metropolitan water treatment facility, approach and outcomes

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Tákina, Te Whanganui-a-Tara Wellington

Extreme weather events | Impacts are being felt around the world

2023 Wildfires in Hawaii

2022 Floods in Pakistan

2022 Drought across Europe

2015-18 Cape Town drought

2021 Texas Cold Snap

Extreme weather events | Impacts are being felt in our region

2023 Auckland Floods

2023 Cyclone Gabrielle

2019-20 Australian Bushfires

17–19 OCTOBER 2023 Takina, Te Whangapui-a-Tara Wellington

Extreme weather events | Are likely to increase in frequency and severity

Climate investment | Mitigation receives more investment than adaptation

Mitigation	Adaptation	

- Compliance and regulatory drivers
- Emissions baseline (Scope 1 and 2 emissions)
- Clear goals and strategy (I.E Net Zero targets)
- Carbon price in business cases to demonstrate return on investment
- \checkmark Ability to measure and verify value

- ? Uncertainty in the risk profile
- ? Uncertainty in the spatial impacts
- ? Uncertainty in the potential scale of damage caused and the cost impacts
- ? Uncertainty in the value of adaptation options
- ? Uncertainty in when decisions need to be made (timing)

Making the case | The challenge with a 'traditional CBA'

- Events of this nature are Low Likelihood, High Consequence
- For climate resilience investments, a risk-weighted approach is typically used to establish the expected value of benefits from taking action:

Benefit = $\sum_{i=0}^{n} (Likelihood \ x \ Avoided \ Consequence)$

- This represents several challenges:
 - 1. Dynamic nature of climate-related impacts **creates low confidence** in the certainty of evaluated benefits and costs
 - 2. Does not account for **broader societal**, environmental, or other intangible costs and benefits
 - 3. Change in frequency and severity of an event over time

Emerging methods | To assess climate resilience investments

Event Scenario Analysis

Consider 'what if' an event was to occur

- Identify 'what might' the consequences look like
- Evaluate 'so what can we do about it?'

- Probabilistic Analysis
- Identify the variables contributing to uncertainty
- Assess realistic ranges and modelled distributions of each variable
- **Predict the probability** of a variety of outcomes when the potential for random variables
- Run simulations (I.E., 10,000) to present the range of outcomes

Model demonstration | Dynamic decision model (Pyxus.IO)

Emerging methods | The value of a dynamic decision model

A dynamic decision-model has:

- A focus on the key decision to be made and the resulting actions
- Integrates traditional and emerging analytical methods
- Tests sensitivity to variables in a live environment

The Challenge | Investing in Climate Resilience The need in the face of a changing climate, current approaches and their challenges

Case Study | Flood Resilience Dynamic Decision Model Investment in flood resilience at a metropolitan water treatment facility, approach and outcomes

Insights | Implications for the Water Sector Implications and recommendations for decision-makers in the water sector

Case Study | Climate resilience assessment for critical electrical infrastructure upgrade

- Metropolitan water treatment facility
- Responsible for 30% of regional supply
- Flood events had the potential to disrupt supply for up to 6 months
- Impacts on community and industry through water restrictions, up to >\$1b depending on duration / severity

Executive were seeking clear guidance to make an informed decision

Deterministic CBA | Climate resilience options

No.	Options	Capital Cost (approx.)
	Base Case	N/A
(1)	Levee	\$15M
(2)	Elevate Switchroom	\$35M
(3)	Levee + raw water pump station	\$40M
(4)	Elevate Switchroom + submersible pumps	\$50M

Deterministic CBA | Climate resilience options

No.	Options	Capital Cost (approx.)	NPV and BCR (Deterministic)
	Base Case	N/A	-\$102M (0.05)
(1)	Levee	\$15M	-\$5.0M (0.90)
(2)	Elevate Switchroom	\$35M	-\$11.1M (0.67)
(3)	Levee + raw water pump station	\$40M	-\$16.2M (0.66)
(4)	Elevate Switchroom + submersible pumps	\$50M	-\$19.3M (0.54)

Key questions | How do we consider `what if' scenarios?

- 1. How are different scenarios considered (ranges in flood impact)?
- 2. What are the boundaries of the assessment? What if they change?
- 3. How are the dynamic nature of climate change considered?
- 4. What is the residual risk exposure?
- 5. What are the key drivers in decision-making?

Model demonstration | Dynamic decision model (Pyxus.IO)

Results | PV of costs and benefits under worst-case scenario

Results | NPV of probabilistic outcomes for 1:1000-year event

Results | Probabilistic outcomes across flood event scenarios

Flood event scenario	Best performing option			
Excluding non-residential benefits				
1:200-year	Base Case			
1:1000-year	(1) Levee			
1:2000-year	(4) ES + Submersible Pumps			
Multiple flood events between 1:200 and 1:1000 year	(1) Levee			
Including non-residential benefits				
1:200-year	(3) Levee + Raw Water Pump Station			
1:1000-year	(3) Levee + Raw Water Pump Station			
1:2000-year	(4) ES + Submersible Pumps			
Multiple flood events between 1:200 and 1:1000 year	(3) Levee + Raw Water Pump Station			

Results | Dynamic Decision Model outcomes

- Conduct an economic review for non-residential benefits review.
- Recommended to construct the levee to provide the most economically viable investment in resilience for up to a 1:1000-year flood event.
- There was the ability to add the raw water pump station once there was further clarification on the inclusion and value of non-residential benefits.

Executive were provided clear guidance to make an informed decision

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Tákina, Te Whanganui-a-Tara Wellington

The Challenge | Investing in Climate Resilience The need in the face of a changing climate, current approaches and their challenges

Case Study Flood Resilience Dynamic Decision Model Investment in flood resilience at a metropolitan water treatment facility, approach and outcomes

Implications and considerations for the industry | Dynamic decision models

- 1. How is **climate resilience** considered in your organisation's strategy and **strategic planning activities**?
- 2. How does your organisation **assess the implications of action and inaction**?
- 3. What **processes and tools** does your organisation utilise? Are they **fit-forpurpose**?
- 4. How are insights and recommendations **communicated to decisionmakers** to engender **buy-in** for a **commitment to action**?

Thank You

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Takina, Te Whanganui-a-Tara Wellington