AQUIFER COMMUNITIES – CAN THEY PREDICT CHANGES IN AOTEAROA'S SOURCE (GROUND)WATER

Louise Weaver, <u>Judith Webber</u>, Erin McGill, Panan Sitthirit, Will Taylor, Bronwyn Humphries, Phil Abraham, Murray Close

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Tákina, Te Whanganui-a-Tara Wellington

INTRODUCTION – 'THE WATER PLANET'

71 % of the earth's surface is covered with water

✤ 3 % of the earth's water is freshwater

2.5 % of the earth's freshwater is unavailable: locked

up in glaciers, polar ice caps, atmosphere, soil, and

deep inaccessible aquifers

✤ 0.5 % is available freshwater: includes groundwater

Table1. Percentages of water on earth

	%
Oceans	97.2
Ice Caps/Glaciers	2.0
Groundwater	0.62
Freshwater Lakes	0.009
Inland seas/salt lakes	0.008
Atmosphere	0.001
Rivers	0.0001
TOTAL	99.8381

- ✤ Global popn. increasing: 1950 (2.5 billion) → 2023 (< 8 billion)</p>
- Land use practices: industrial applications, urban development and farming
- Release pollutants that infiltrate groundwater aquifers, threatening drinking
 ^{ht} water supplies
 - Metals (arsenic, manganese)
 - Petroleum products
 - Plastics
 - Pathogenic bacteria
 - Nutrients (nitrogen and phosphorus)

https://wrytin.com/kashish4/global-population-jxniqgzz

Q. How are pollutants removed from groundwater?

Aquifers naturally filter groundwater by forcing it to pass through small pores and

between sediment particles

 Predatory organisms i.e., stygofauna, protozoa, bacteriophages feed on pathogenic bacteria and biofilms

Biological (bacterial) communities utilise contaminants as energy (carbon) sources

BIOLOGICAL – BACTERIAL COMMUNITIES

- Bacterial communities can adapt to subtle changes in the chemical composition of a groundwater system
- Changes in bacterial communities could potentially be used as an early warning of a change in

water quality i.e., nitrate contamination and changes in ecosystem functioning

INTERNATIONAL RESEARCH

Links found between bacterial communities and water quality

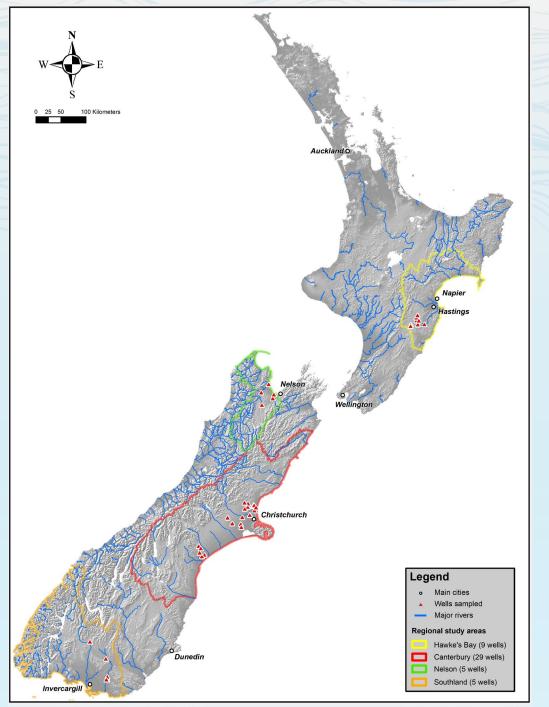
- Overseas research has found that increased organic contamination has a negative effect on bacterial diversity
- Bacterial community compositions in polluted environments shift towards less diverse but more specialised communities
- Bacterial populations affiliated with Proteobacteria, Actinobacteria and Acidobacteria are

dominant in environments polluted with organic compounds and pesticides

BALABAN, N., YANKELZON, I., ADAR, E., GELMAN, F., RONEN, Z. & BERNSTEIN, A. 2019. The spatial distribution of the microbial community in a contaminated aquitard below an industrial zone. Water, 11, 2128. HOLMSGAARD, P. N., DEALTRY, S., DUNON, V., HEUER, H., HANSEN, L. H., SPRINGAEL, D., SMALLA, K., RIBER, L. & SØRENSEN, S. J. 2017. Response of the bacter on-farm biopurification system, to which diverse pesticides are introduced over an agricultural season. Environmental Pollution, 229, 854-862.

He Pūtaiao, He Tāngata

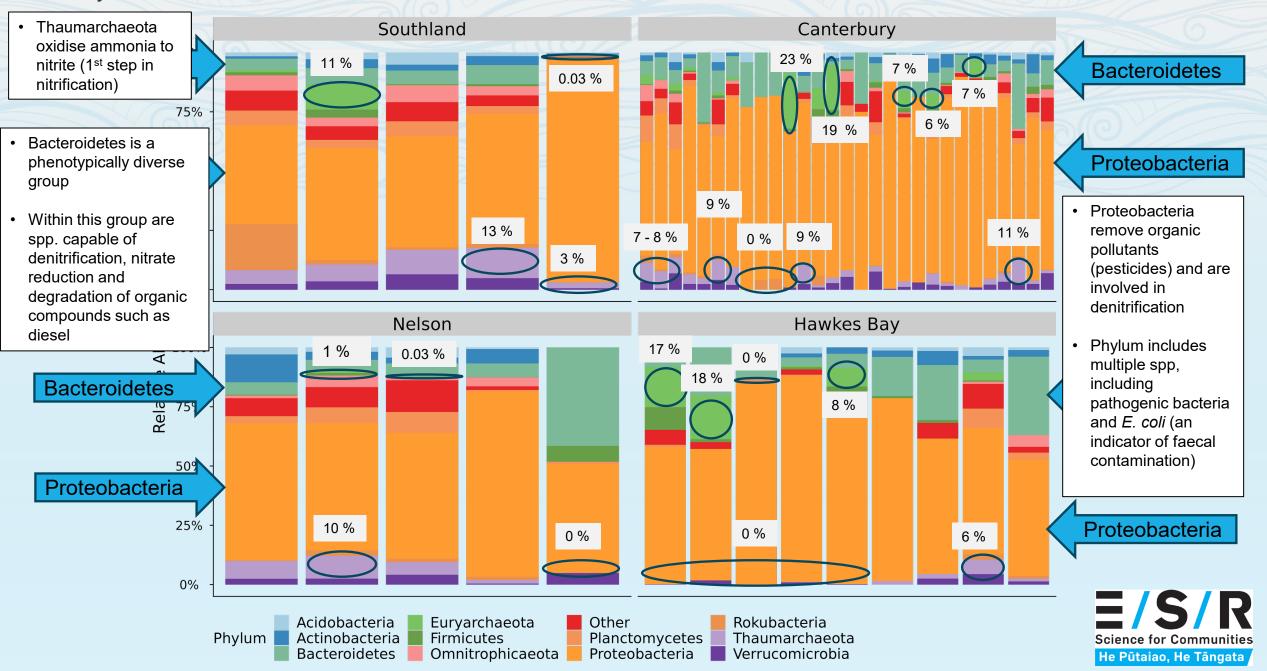
STUDY QUESTIONS


- Can differences in bacterial communities be used to help predict changes in water quality
- Does the composition of a bacterial community change depending on aquifer geology (location)

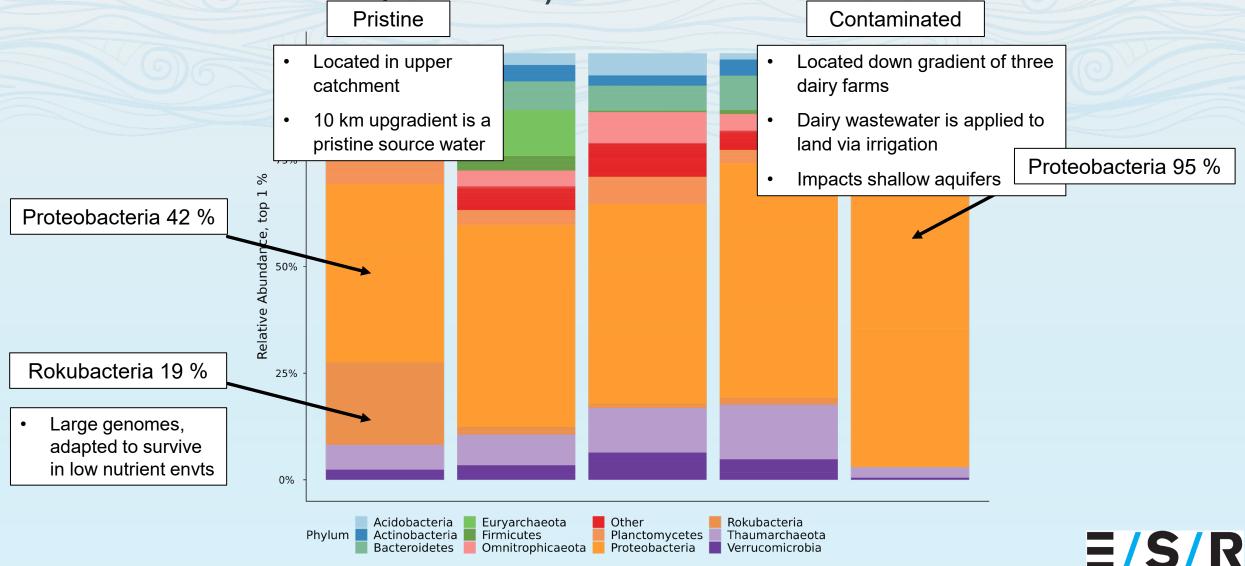
WHAT WE DID

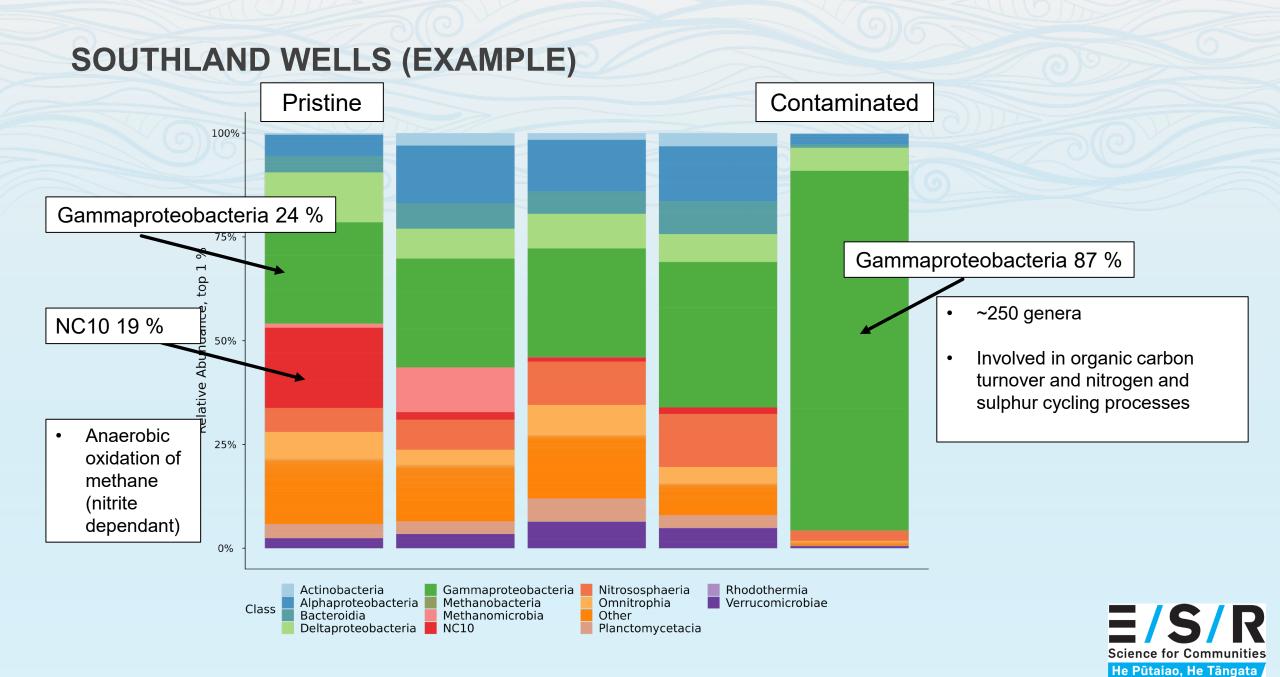
Sampled:

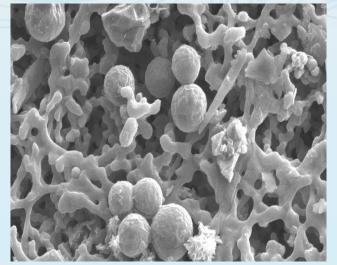
- 49 wells (shallow aquifers) in four regions
- Well parameters: pH, temp, dissolved oxygen, nitrate, total nitrogen etc.
- Extracted DNA: sequenced bacteria



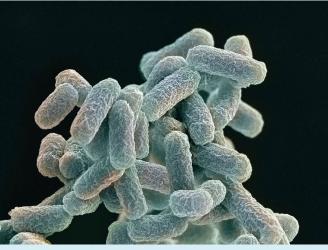
ANALYSIS


- Calc. bacterial abund. (different species within a community)
- Calc. diversity
 - Alpha How many different bacterial species are detected within each sample
 - Beta The difference in bacterial composition between samples (regions)
- Evaluated correlations: between bacterial abund. and well parameters
- Machine learning to assess bacterial abund. and nitrate classification


Blackentalatterente 429/5%



Science for Communities He Pūtaiao, He Tāngata


AQUIFER BACTERIA

Aquifer biofilm

https://www.auckland.ac.nz/en/news/2020/04/21/secret-life-of-our-aquifers.html

E. coli (Proteobacteria)

https://pixels.com/ (Steve Gschmeissner)

~2.0 x 0.5 microns

Indicator of faecal contamination

PROTEOBACTERIA

Pseudomonas denitrificans

~ 1.05 x 0.8 microns

Pseudomonas aeruginosa

Denitrification

ROKUBACTERIA

NC10 (k)

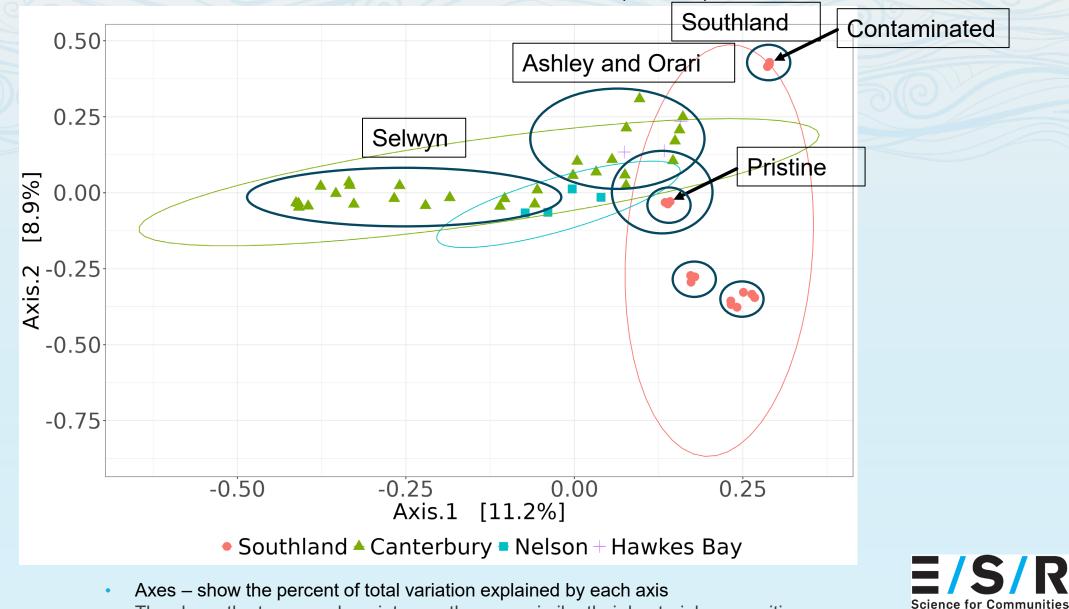
10 - 30 microns, round or oval, honeycomb-shaped microcolonies

Denitrifying methanotroph

HE, Z., CAI, C., WANG, J., XU, X., ZHENG, P., JETTEN, M. S. & HU, B. 2016. A novel denitrifying methanotroph of the NC10 phylum and its microcolony. Scientific reports, 6, 32241.

ALPHA DIVERSITY - SOUTHLAND

Less contamination = more bacterial diversity


Higher contamination = less bacterial diversity

	Shannon Index (spp. diversity)		
Pristine	5.6		
Contaminated	1.8		

	Observed Index (# of spp.)	
Pristine	530	
Contaminated	55	

BETA DIVERSITY - PRINCIPAL COORDINATE ANALYSIS (PCOA)

The closer the two sample points are, the more similar their bacterial composition

He Pūtaiao, He Tāngata

DIFFERENCES - Southland

- Cooler climate
- Aquifers have a unique geology, being thin, long and shallow with alluvial deposits
- The alluvial deposits underlain with Gore lignite sedimentary rock
 - Formed from naturally acidic compressed peat
- ✤ Average thickness of alluvial deposit ~10 15 m
- In contrast: Canterbury Plains
 - Thickness of alluvial gravel commonly exceeds 100 m

DIFFERENCES - Southland

Parameter	Unit	Southland	Other regions (range)	Median
*pH		5.8	6.6 - 7.0	۹ ۹
*Temperature	°C	10.4	13.1 - 13.9	Lower
DOC	mg/L	0.6	1.7 - 2.2	
DO	mg/L	6.3	1.4 - 5.7	
Specific conductance	uS/cm	340	149 - 175	Higher
Nitrate	mg/L	5.5	1.1 - 2.5	
Total nitrogen	mg/L	5.7	1.1 - 2.6	
* p-value < 0.002				

CORRELATIONS

- Significant positive correlations were found between several bacterial spp. and pH
- Moderate correlations were found between bacterial spp. and total nitrogen, organic

reactive phosphorus and nitrate

MACHINE LEARNING – RANDOM FOREST

- Used a small subset of groundwater data
- Assessed bacterial abund. and nitrate classification using Random Forest

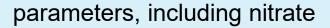
NZ Drinking Water Std	Nitrate-N (mg/L)	Category
WHO MAV	0 – 1	Pristine
	1 – 11.3	Below MAV
	< 11.3	Above MAV

Correctly predicted: 90 % of nitrate classifications using Rel. Abund. of Thaumarecaeota and Protect / C

CONCLUSIONS

Q. Can differences in bacterial communities be used to help predict changes in water quality

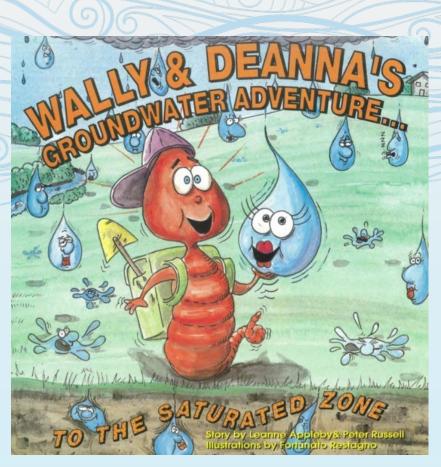
- Contaminated wells had more Proteobacteria than pristine wells and less bacterial diversity
- Correlations were identified between bacteria and pH, total nitrogen, organic reactive phosphorus and nitrate
- Random Forest: correctly predicted 90 % of nitrate classifications using abundances of Thaumarecaeota and Proteobacteria


CONCLUSIONS

Q. Does the composition of a bacterial community change depending on the well geology (location)

The Southland region had a different geology and a different bacterial composition (community) compared to the other regions

OVERALL CONCLUSION:


- * While differences in the bacterial community were not apparent from abundance data (at level of phyla or genera)
 - Diversity data indicated differences in bacterial composition based on geology
 - Correlation and machine learning pipelines showed links between bacterial taxa and groundwater

ACKNOWLEDGEMENTS

- Funding: ESR SSIF funding
- Thanks for listening!

https://gw-project.org/groundwater-education-for-children/

