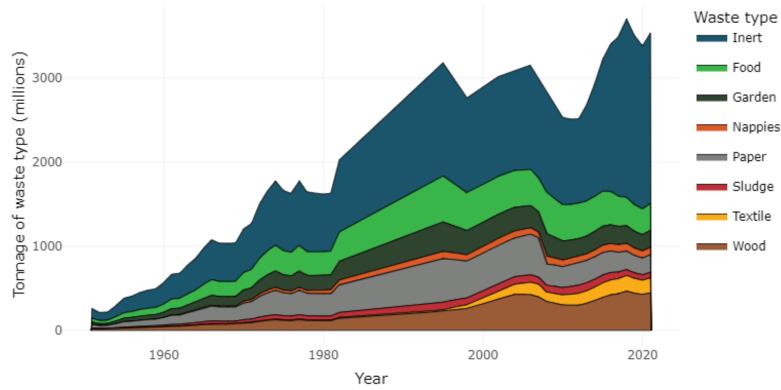


Liam Allan (Pattle Delamore Partners Ltd)

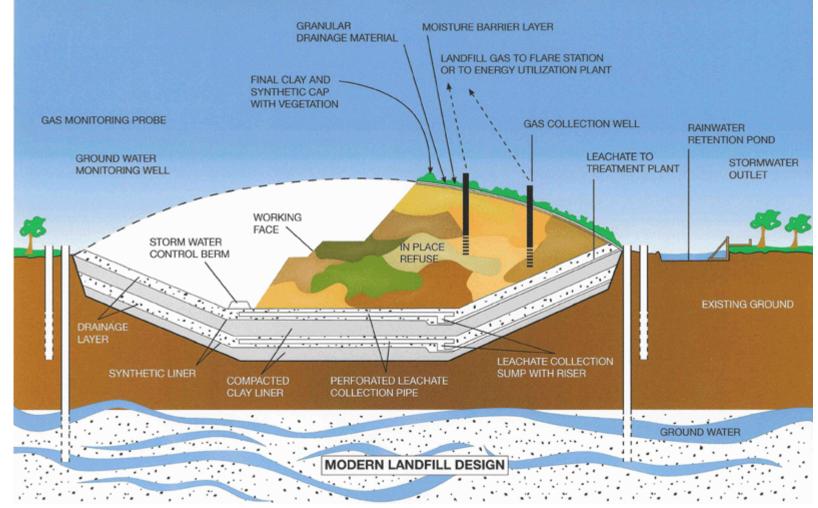
Treating Leachate-Impacted Stormwater with a Nitrifying Trickling Filter: Not a Load of Rubbish


Co-Authors: Dr Mark Ellis (Pattle Delamore Partners Ltd) & Dr Sachin Narkhede (Timaru District Council)

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Tākina, Te Whanganui-a-Tara Wellington

Introduction

- 700 kg of waste per person in 2022-2023 period in NZ
- Where does it go?
- Most landfills until 1980s were unlined "tips"
- Dealing with legacy environmental impacts



Source: MfE Waste Generation and Disposal Data (2023)

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Takina, Te Whanganui-a-Tara Wellington

Leachate and Landfills: A Re-Cap

Source: CSIR Guidelines for Human Settlement Planning and Design Volume 2 (2000)

- Leachate results from water percolating through a landfill and picking up contaminants
- Organic nitrogen is converted to ammoniacalnitrogen, harmful to aquatic life
- Modern landfills manage leachate using capping, liners, and collection systems

The Site

- Redruth Landfill, South Timaru
- Landfilling since 1940s (Stage 1)
- Ongoing improvement work and landfilling activities
- Public access
 - Walkway
 - Eco Centre
 - Crows Nest
- Stormwater drain to pump station

Issues

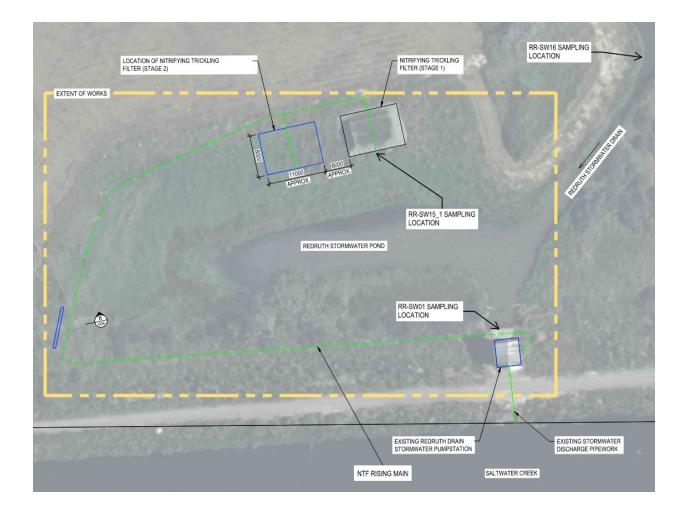
- Historical landfill cells with minimal capping and liners
 - More leachate generated
 - Leachate seeps to site stormwater
 network
- Leachate-impacted stormwater enters Saltwater Creek via SW01 pump station
- Elevated ammoniacal nitrogen at SW01
- Waterway concentration increases

	Ammoniacal-N (2004-2020)		
	RR-SW04		RR-SW02
	(Ōtipua-	RR-SW01	(Ōtipua-
	Saltwater Creek	(Pump Station)	Saltwater Creek
	– Upstream)		– Downstream)
Trigger Value (g/m ³)	0.7		
Sample Size	30	41	43
Lower Quartile (g/m ³)	0.03	13.8	0.30
Median (g/m ³)	0.12	22	0.54
Upper Quartile (g/m ³)	0.27	32	2.00
Max (g/m ³)	3.20	66	7.00

Objectives

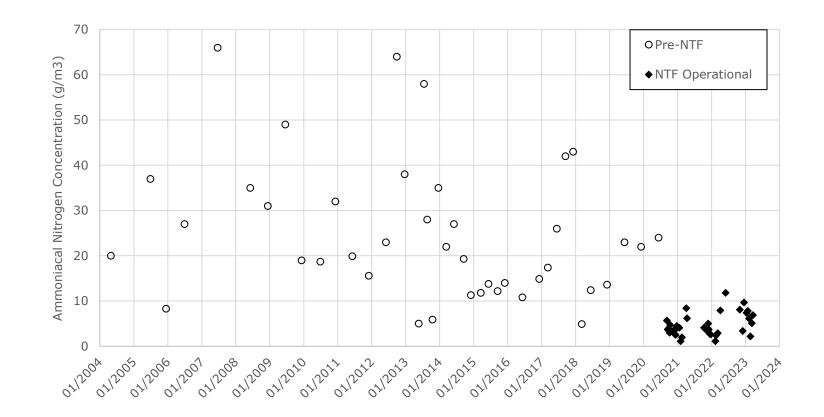
- Mitigate the ecotoxic effect of ammoniacal nitrogen on Saltwater Creek
- Visually-appealing design due to proximity to walkways
- Easy to maintain and operate with no specialist skills
- Minimal capital and operational costs
- Incorporate community
 education

Design



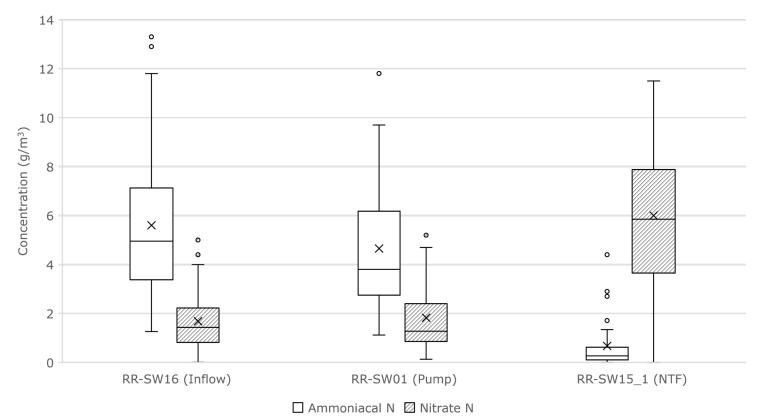
- Nitrifying Trickling Filter (NTF) with gabion basket construction
- Cost efficient
- Blends-in to surrounding
 environment
- Flexible material

Operation and Monitoring


- Utilises existing pump housing and power supply
- Sprinklers provide ammoniacal nitrogen to nitrifying bacteria on rock surfaces
- Pump controller is intuitive
- Three monitoring locations 36 samples since September 2020

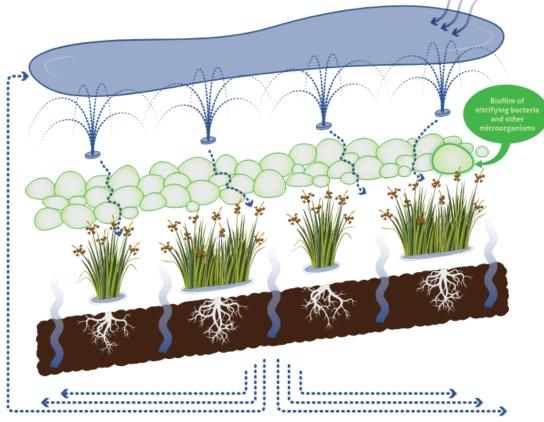
Long-Term Water Quality

- Consistently lower concentrations after commissioning
- Decreasing trend since 2010
- Visible improvements of pond clarity noted



Nitrification

- Conversion of ammoniacalnitrogen to nitrate-nitrogen
- Treatment efficiency typically >90%
- Nitrate increase
- Concentration is still elevated – more can be done



water

17-19 OCTOBER 2023

Next Steps

Nitrifying Trickling Filter

Recirculated back through the NTF

Pumped into Otipua - Saltwater Creek

1

Stormwater from the surrounding catchment flows into the pond.

2

Stormwater from the pond is pumped to sprinklers at the top of the NTF.

3

The water trickles through the NTF rocks. The rocks are coated in a slime layer of 'nitrifying bacteria'.

4

The bacteria convert ammonia to nitrate which is then taken up by plantings at the base of the NTF.

5

Plant roots convert nitrates into nitrogen gas which is returned to the atmosphere (denitrification).

6

Treated stormwater is recirculated back through the NTF or pumped into Otipua - Saltwater Creek.

www.timaru.govt.nz

Water NEW ZEALAND The New Zealand Water & Wastes Association Walora Actearca

Display board to be installed soon

- Eco Centre has presented to school groups on the NTF
- Second NTF monitoring
- Nitrate treatment
 needed

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Täkin, Te Wanganui-a-Tar Wellington

Summary

- The objectives of the design have all been achieved
- High treatment efficiency typically >90%
- Highly replicable, simple design

Acknowledgements

- Co-authors Dr Mark Ellis (PDP) and Dr Sachin Narkhede (Timaru District Council)
- Nils Buchan (PDP) NTF Stage 2 designer
- Trinity White (PDP) Community display board designer
- Timaru District Council
- South Canterbury Eco Centre

Questions?

Water NEW ZEALAND CONFERENCE & EXPO 17-19 OCTOBER 2023 Takina, Te Whanganui-a-Tara Wellington