Whats next for Chch flood modelling?

water

Introduction

The major elements of Christchurch flood modelling schematisation were determined in 2016/17. Changes in the seven years since have been incremental, not major.
However;

- we have lessons learned from using the models and
- opportunities from new technologies

Motivation - do more, better and faster
Time to reconsider alternatives
water

Contents

Mesh
Reduction in M11
Model integration
Joint probability
Radar rainfall
Impervious coverage
LiDAR cross sections
Depth tolerance
Data centric modelling

Triangular mesh

A success in it's time (2016) when GPU computation was new and triangular mesh came with that, but

- costly to generate and update
- secondary features are often deleted by higher priority features
- Has driven blockouts to delete road (bridge) surfaces

Triangular mesh does not seem to be popular in Australasia with peer organisations
water

Modelling Symposium 2024

40 Modeling Group
water

Alternative mesh1

The most popular form of mesh remains simple grid (uniform size)

- In an urban setting like Christchurch, a grid size of circa $2 \times 2 \mathrm{~m}$ would be expected to generate comparable hydraulic fidelity to the current mesh

	Triangular mesh	Uniform grid
Cell count (millions)	1.8	30
Average size	$70 \mathrm{~m}^{2}$	$4 \mathrm{~m}^{2}$
Minimum size	$12 \mathrm{~m}^{2}$	$4 \mathrm{~m}^{2}$

GPU computational speed seems almost unlimited, but the 30 million cell count may exceed memory capacity on typical desktop computing

Modelling Group WATER NEW ZEALAND

Alternative mesh2

Quadtree is essentially a large grid mesh, where selected cells are subdivided into four, and this process can be repeated to any level of detail
Anticipating primary cells of $16 \times 16 \mathrm{~m}$, and four levels of subdivision to the smallest cell of $2 \times 2 \mathrm{~m}$, quadtree mesh might look like this

	Triangular mesh	Quadtree mesh	Uniform grid
Cell count (millions)	1.8	10	30
Average size	$70 \mathrm{~m}^{2}$	$12 \mathrm{~m}^{2}$	$4 \mathrm{~m}^{2}$
Minimum size	$12 \mathrm{~m}^{2}$	$4 \mathrm{~m}^{2}$	$4 \mathrm{~m}^{2}$

A system to build a specialised DHI compatible form of quadtree mesh has been developed (credit Tuflow)

Modelling Group
MOTR NEW ZEALAND
water

$\underline{⿹}$ \underline{E}

齐 MiME Zero- [outmesh]
File Edit View Window Help

Modelling Symposium 2024

M Modelling Group
water

Next mesh steps

Reconsider ways to simplify and improve on the current triangular mesh Pilot study to build an Avon quadtree mesh and test performance (maybe)

M11 Reduction

Less river (M11) modelling and more urban (MU) channels because of

- M11 blockout conflicts with road intersections
- Costs to build and check lateral linking lines
- Depth tolerance
- Inability to connect sump inlets to M11
- M11 to MU couples (key stability risk troublespots)

water

Modelling Symposium 2024

M0) Modeling Gioup
water
3

Model integration underway

Proceeding with caution

- Adjusting model boundaries to minimise floodplain interaction
- Preparing for more (dozens) of piped interactions
- Online dbase system to share timeseries at interaction locations
- Exchange pipe timeseries at adjacent boundaries
- Time series interpolation tool being developed to fill in gaps when adjacent models use differing setups like rainfall durations (credit T+T)

Discharge at different rain durations for Prestons,
Hills Road intersection, 2020_50ARI_UP_M11

Modelling Group
WATER NEW ZEALAND
water

Boundary adjustments

Modelling Symposium 2024
GHD
(4)

Noceding cioup
water
s

Joint probability

Defines sea level conditions coincident with river flooding
Improvements to the 2020 mathematical techniques
Expansion to Heathcote, Styx, Sumner and inland estuary
Due to publish in May
Inland locations have higher correlation and higher joint extreme conditions
Otherwise similarity across catchments
Looking to investigate the practical implications of various coincidences
Credits GHD/PDP/HKV

Modelling Group
moreimg gio
water

24-hour
Joint probability

Rainfall radar

Reprocessed 2017 radar data (credit WeatherRadar and Mott McD)
Better (quantified) rainfall from radar
Good on the flat land, bad on the hillside
Opportunities to 'better calibrate' radar site for even better results but
Motivation on the flat land is weak, quality on the hillside is poor
Considering whether there is a business case to do more
water

Figure 6: QPE total accumulations for the July 2017 event, prepared with the WRNZ methodology (left) and as provided by MetService from the IRIS software (middle). The MetService data has been re-gridded to the WRNZ analysis grid to allow a difference comparison (right), which highlights significant differences around the topography of the Port Hills, along with artificial range-based artefacts- ring pattern.

Modelling Symposium 2024

Modelling Group
WATER NEW ZEALAND
water

Impervious coverage

Defacto impervious data from satellite imagery, incl infrared, 10 m resolution, and evident blurring larger than 10 m (roads poorly represented)
New impervious data from aerial photography, 0.075 m resolution sharp images, excl infrared
Processing with AI to recognise landuse classifications and pervious or impervious (credit Lynker)
Good quality metrics on random point assessment
Room to improve on road surface outlines and on gravel
More inspection in progress

Modelling Group WATER NEW ZEALAND

LiDAR cross sections

Specialised reprocessing of LiDAR point cloud data (credit Landpro)
Objective to maximise quality of open channel geometry
Improving on the default processed "1m raster" data

Before and after

Very early days but looks promising so far

Modelling Symposium 2024

N Modelling Group
water
)

Depth tolerance

Mflood depth tolerance parameter drives artificial water level differences between river and floodplain (M11 - M21), but beneficial to model stability Current practices $0.100-0.300 \mathrm{~m}$ tolerance, unacceptable to Council

Modelling Group
WATER NEW ZEALAND
water

Depth tolerance

Early results (credit Antoinette@DHI) indicate that v2020 might be intrinsically better so as to work with acceptable tolerance such as 0.025 m
Further options being considered include;

- Conversion to MU open channels (CRS linking method)
- Adjusting the location of the linking line (and hence level), to avoid high depths
- More testing and trials are anticipated

Modelling Group
Modeling Gio
water

Data centric modelling

Aligning input data and modelling data to reduce the efforts for interaction and model updates (model data certainly and GIS data hopefully)
Work has been happening in the other two waters
Aspirational and just starting maybe in stormwater (David!)

Modelling Symposium 2024
GHD
water

Thank you! Questions? Patai?

NEW ZEALAND

