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Executive summary 
 
This project undertook a classification of residential water end use as part of a national-scale study 
by BRANZ. The study captured water use at a sampling frequency of 0.1 Hz, providing high-resolution 
data for the end use separation. Three methods were used to identify the end use types: 
 

• Time series disaggregation  
• Event-based disaggregation 
• Support Vector Machines (SVM) supervised learning model 

 
The mean daily use was 543 litres per dwelling (237 litres per person), while the median daily use 
was 397 litres per dwelling (165 litres per person).  The mean hourly flow was 26 litres per hour, 
while the median hourly flow was 20 litres per hour. The average minimum night flow was 7 litres 
per hour, while the median minimum night flow was 2 litres per hour. These mean flows and 
minimum night flows exhibited seasonal variation. Dwellings that were metered and volumetrically 
charged used less water, on average, than those dwellings that were not metered and volumetrically 
charged.  
 
The time series analysis provided an approximate calibration for the event-based disaggregation of 
residential water use, although calibration with field monitoring data would improve this process. 
The event-based disaggregation, which was also informed by household survey results where 
possible, was subsequently applied to all dwellings. The estimated contributions of different 
appliances to the total water use were generally in agreement with previously reported studies, 
although washing machine use was approximately 10% lower in this study. This may be caused by an 
increase in front loader use reported in the household survey or by limitations in the relatively 
simple disaggregation approach. The average use breakdown was:  
 

• 24%  Toilet 
• 31%  Shower 
• 19%  Tap 
• 13%  Washing Machine 
• 3%  Dishwasher 
• 7%  High Flow or Outdoor Use 
• 2%  Leaks or Drips 
• 1%  Undefined 

 
The different end use types varied considerably between dwellings and fluctuated during the year, 
with significantly larger high flow and/or outdoor use during the summer months. Total water 
consumption also fluctuated between seasons.  
 
The SVM model performed very well, with over 95% of events correctly classified using standard 
regularisation values. When using optimised parameters obtained using a grid search, this improved 
to over 99% of events correctly classified. However, it should be noted that, lacking appliance 
signatures or pre-labelled events for training purposes, the SVM model was trained using data from 
the event-based disaggregation approach, thus was not tested for independently labelled data. 
 
Data completeness was a significant issue for this study, with large numbers of missing data points 
from many of the dwellings. The lack of appliance signature data or pre-labelled events was an 
additional limitation in this study; engagement with end users and the use of smart instrumentation 
to obtain these data represents an opportunity for future research.   
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1 Introduction 
 
1.1 Purpose of this report 
 
This report summarises research undertaken to support the broader project by the BRANZ titled 
Residential Water Use in New Zealand (Pollard, 2022). Quantifying residential use is important for 
councils and other entities responsible for water supply, assisting them in making informed decisions 
about the allocation of an increasingly scarce resource. Pollard (2022) summarises previous research 
projects undertaken to disaggregate residential end use into components for Winter and Summer 
periods; the reader is referred to this reference for the full details of these projects.  
 
The current project (Pollard, 2022) utilised flow meters that collected water at 10-second intervals 
over relatively long timeframes, providing further opportunities for the interrogation of the 
collection data than had been possible in previous studies. The instrument data were supplemented 
by the results of a survey to gather information on household water use and appliances. Due to 
issues with the instrumentation and collected data, the project scope was narrowed to a reduced 
sample size and disaggregation into different end use types was not undertaken. The University of 
Auckland was contracted to undertake this end use disaggregation and to report on the results.  
 
It should be noted that the instrumentation and data issues outlined in Pollard (2022) also affected 
this component of the overall research project. Many data records were too short or contained too 
many gaps to be used for the end use disaggregation or seasonal analysis (although they were 
included in the overall use statistics). The survey questions were not always answered fully, leading 
to uncertainties regarding household size or the types and numbers of appliances. Very limited 
appliance signature data were available, such that the identification of end uses required a 
somewhat iterative approach (described in Section 3). These issues and some of the inherent 
limitations in the current data analysis create some opportunities for future research; these 
opportunities are discussed briefly in Section 5.  
 
1.2 Project objectives 
 
The objective of this project is to quantify the components of the residential water use dataset 
presented in Pollard (2022). This included the disaggregation of water leakage from the overall 
dataset, or at least the identification of common signatures of different sources of leakage. It also 
included the disaggregation of water use into its components, similar to the WEEP (Heinrich, 2007) 
and AWUS (Roberti, 2010) projects but with a different analysis approach (lacking signature data and 
without using commercial software packages). Where appropriate, the disaggregation results are 
compared to the findings of these previous studies. Although an additional objective was the 
identification of influences of residential use where possible, this has not been undertaken in detail 
due to limitations in the dataset.   
 
Version 2.0 of this report also includes additional information on the variability in the results, with 
standard deviations and 95% confidence intervals in the mean values included in the diurnal curve 
figures and in the tabulated results. It also includes the use frequencies derived for the different 
appliance/use types.   
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2 Overall data summary  
 
Pollard (2022) summarises the data collected within this project, particularly the information about 
each property and their self-reported water use as collected within the survey. This section contains 
some additional information about the overall dataset, which informed the methodology described 
in Section 3.  
 
The mean record length is 291 days, with a minimum record length of 49 days and a maximum 
record length of 564 days. Although many of the records were nearly complete, a number were 
missing large amounts of data. The maximum percentage of missing values was 46%, while the mean 
number of missing data values was 15% across all dwellings. However, the records tended to cover 
different time periods, making direct comparisons difficult. The dwellings cover a range of water use 
behaviours, both in terms of the water use per person and the water use per dwelling. Both will be 
discussed in this section, although the sample size for the two definitions of water use is slightly 
different. Occupancy information was only available for 55 of the 66 dwellings considered in this 
study, or 83% of the dwellings; these are summarised in Table 1.  
 
The effects of occupancy on the distribution of water use are shown in Figure 1. The average daily 
water use per dwelling was 543 litres, while the median daily water use was 397 litres. The 
equivalent average daily water use per person was 237 litres, while the median daily water use per 
person was 165 litres.  
 
Table 1 Reported occupancy levels for all dwellings in this study. 

Number of occupants Count 
1 12 
2 22 
3 6 
4 8 
5 6 
7 1 

 
 

  
Figure 1 Distribution of average water use in litres per day, considered on a per-dwelling (left figure) and per-person (right 
figure) basis.  
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The survey data identified which of the households were metered and volumetrically charged for 
their water use. As shown in Table 2, although the results were limited by the sample size, the 
households that were metered and volumetrically charged did use less water. However, this may not 
be a causal link; dwellings with higher average use may simply be less likely to be metered and 
volumetrically charged. This result was consistent whether considering the average or median daily 
volumes; this also applied when considering per-person use. This table also details the differences in 
seasonal use between houses based on metering and volumetric charging, although some of these 
are affected by data completeness (refer to Figure 6 of Pollard, 2022, and the associated discussion). 
Several households recorded the highest water use in Winter. The variability in the data is clear, with 
very large standard deviations observed (particularly in Summer).  
 
Table 2 Daily use statistics, considering whether dwellings were metered and volumetrically charged.  

 Average Daily 
Volume (litres) 

Median Daily 
Volume (litres) 

Average Daily 
Volume Per 

Person (litres) 

Median Daily 
Volume Per 

Person (litres) 
Entire record 
All households 543 (𝜎𝜎=482) 397 237 (𝜎𝜎=197) 165 
Metered and 
volumetrically charged 424 (𝜎𝜎=359) 319 198 (𝜎𝜎=198) 127 

Not metered and 
volumetrically charged 682 (𝜎𝜎=570) 551 304 (𝜎𝜎=182) 266 

Spring 
All households 464 (𝜎𝜎=498) 277 201 (𝜎𝜎=200) 145 
Metered and 
volumetrically charged 286 (𝜎𝜎=362) 180 138 (𝜎𝜎=195) 68 

Not metered and 
volumetrically charged 655 (𝜎𝜎=555) 513 295 (𝜎𝜎=172) 244 

Summer 
All households 614 (𝜎𝜎=690) 412 272 (𝜎𝜎=371) 163 
Metered and 
volumetrically charged 554 (𝜎𝜎=802) 331 250 (𝜎𝜎=411) 119 

Not metered and 
volumetrically charged 687 (𝜎𝜎=533) 574 310 (𝜎𝜎=295) 237 

Autumn 
All households 476 (𝜎𝜎=301) 411 209 (𝜎𝜎=144) 156 
Metered and 
volumetrically charged 419 (𝜎𝜎=232) 363 186 (𝜎𝜎=127) 144 

Not metered and 
volumetrically charged 550 (𝜎𝜎=364) 537 256 (𝜎𝜎=167) 250 

Winter 
All households 548 (𝜎𝜎=696) 390 226 (𝜎𝜎=202) 163 
Metered and 
volumetrically charged 379 (𝜎𝜎=201) 336 177 (𝜎𝜎=198) 128 

Not metered and 
volumetrically charged 765 (𝜎𝜎=996) 446 322 (𝜎𝜎=274) 260 
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Further to the information provided in Table 2, Table 3 provides the 95% confidence intervals for the 
average daily volume per dwelling and per person. These are calculated using two different 
approaches. Firstly, the confidence intervals were calculated using the t-distribution (Freund, 1962). 
Secondly, the confidence intervals were calculated using bootstrapping, drawing observations with 
replacement and assuming that the variability across these datasets approximates the sampling 
error (see Dragicevic, 2016). The confidence intervals generated using bootstrapping tended to be 
slightly narrower than those calculated using the t-distribution. Figure 2 also illustrates the 
distribution of average daily water use for dwellings, differentiated by metering and volumetric 
charging. As noted previously, the higher use (on average) associated with houses that were not 
metered and volumetrically charged merits further investigation, ideally with a larger sample size. 
 
Table 3 95% confidence intervals for the average daily volumes (per dwelling and per person), comparing bootstrapping and 
t-distribution approaches.  

 

Average Daily 
Volume (litres) 
95% confidence 

interval,  
t-distribution 

Average Daily 
Volume Per 

Person (litres)  
95% confidence 

interval,  
t-distribution 

Average Daily 
Volume (litres) 
95% confidence 

interval, 
bootstrap 

Average Daily 
Volume Per 

Person (litres)  
95% confidence 

interval, 
bootstrap 

Entire record 
All households [425, 660] [183, 290]  [438, 664] [188, 291] 
Metered and 
volumetrically charged [302, 545] [130, 266]  [320, 554] [141, 269] 

Not metered and 
volumetrically charged [472, 890] [219, 389]  [502, 896] [233, 388] 

Spring 
All households [335, 592] [143, 257]  [380, 555] [150, 259] 
Metered and 
volumetrically charged [152, 418] [65, 210]  [186, 387] [79, 215] 

Not metered and 
volumetrically charged [444, 866] [214, 375]  [466, 858] [228, 374] 

Summer 
All households [423, 804] [159, 384]  [449, 820] [179, 395] 
Metered and 
volumetrically charged [249, 859] [90, 409]  [321, 875] [129, 420] 

Not metered and 
volumetrically charged [461, 911] [153, 467]  [487, 909] [194, 474] 

Autumn 
All households [399, 552] [168, 249]  [407, 553] [172, 249] 
Metered and 
volumetrically charged [339, 499] [141, 230]  [349, 497] [147, 232] 

Not metered and 
volumetrically charged [405, 694] [170, 341]  [428, 698] [184, 337] 

Winter 
All households [363, 733] [167, 285]  [404, 757] [175, 289] 
Metered and 
volumetrically charged [306, 451] [128, 225]  [314, 450] [135, 227] 

Not metered and 
volumetrically charged [354, 1176] [176, 468]  [471, 1203] [210, 463] 
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Figure 2 Effects of metering and volumetric charging (identified through the survey data) on the distribution of average 
water use in litres per day, where “Yes” and “No” denote households that were and were not metered and volumetrically 
charged, respectively.   

The data provided in Figure 1, Figure 2 and Table 2 consider the average daily use from each 
dwelling. Figure 3 shows the daily use distributions (per property and per person) calculated 
including all individual days from all dwellings. Figure 4 shows similar distributions, separated by 
season. Unsurprisingly, the shape of these distributions exhibited seasonal variation, with much 
broader distributions in Spring and Summer than in Autumn and Winter. As might be expected for 
water consumption curves, these exhibit a shape typical of a lognormal distribution. However, given 
the different record lengths associated with different properties, no further statistical values are 
calculated from these distributions.  

   
Figure 3 Distributions of daily water use volumes on a per-dwelling (left figure) and per-person (right figure) basis.  
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Figure 4 Seasonal distributions of daily water use volumes on a per-dwelling basis. Note that the vertical scales differ 
between the individual distributions. 

The high temporal resolution of the dataset also enabled the calculation of variations in water use 
during the day. Three types of “diurnal curves” are reported in this study: 
 

• Peaking factors (normalised by average daily use) 
• Hourly flowrate per dwelling 
• Hourly flowrate per person 

 
These three types of diurnal curves are shown in Figure 5, Figure 6 and Figure 7, respectively. It 
should be noted that these hourly diurnal curves are plotted from 0000 to 2300. The lack of 
wraparound explains the slight discontinuities between the start and end points within these figures. 
Given that the peaking factors are normalised by the average consumption, these exhibit less 
variability than the flowrates. This variability is expressed as the 95% confidence interval around the 
mean value, calculated using bootstrapping.  
 
These diurnal curves may also be plotted to capture seasonal or weekday/weekend variations. These 
are not included within the main body of this report; rather, they are included in Appendix A: Diurnal 
curves. Although these curves can also be further refined into individual months or days of the week, 
these do not yield much additional information and are not included. The trends evident in these 
additional curves are unsurprising. Weekday use is more sharply peaked in the morning and evening, 
while the weekend use has a later and less pronounced morning peak, with more consistent use 
throughout the day. The seasonal variations demonstrate that the morning peak occurs at different 
times depending on the season (earlier in summer) while the afternoon/evening peak is strongest 
during summer, then Autumn (particularly due to the contribution of March), then Spring and 
Winter.  
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Figure 5 Hourly variation in peaking factors, averaged over all dwellings, where the shaded area represents the 95% 
confidence interval around the mean.  

 
Figure 6 Hourly variation in flowrate, averaged over all dwellings, where the shaded area represents the 95% confidence 
interval around the mean.  

 

Figure 7 Hourly variation in flowrate per person, averaged over all dwellings, where the shaded area represents the 95% 
confidence interval around the mean.  
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Table 4 summarises the morning and evening peaking factors (and their timing) for these different 
cases.  Overall, despite the differences in daily water use between dwellings, the timing of the peaks 
within the (hourly resampled) diurnal curves was reasonably consistent across seasons and between 
weekdays and weekends. Unsurprisingly, the morning peak occurred earlier in Spring and Summer, 
while it occurred slightly later in Winter. Weekdays on average had a morning peak occurring at 
0700, while the morning peak in weekends occurred at 0800. The timing of the evening peak was 
consistent across all seasons, although the peak occurred slightly earlier in weekends.  
 
The magnitudes of the peaking factors exhibited considerable variability across the entire data. The 
standard deviations listed in Table 4 are very large, in some cases of the same magnitude as the 
average peaking factors themselves, while the 95% confidence intervals around the mean 
(calculated using bootstrapping) are relatively broad. This demonstrates the diversity of water use 
profiles across the various dwellings included in the dataset. Although these standard deviations 
would likely reduce if the data were further broken down by dwelling type or other socio-economic 
data (the same is true in general of standard deviations reported elsewhere in this report), this more 
detailed analysis was not undertaken in the current project. It is also noted that the sample size and 
data quality (see Pollard, 2022) may be insufficient for such an analysis, although the results are 
likely to be of interest to water service provides in the future.  
 
Table 4 Summary of morning and evening peaking factors, including seasonal and weekday/weekend variations. Peaking 
factors are reported in terms of average (mean) and median values across all dwellings, and including standard deviations 
and 95% confidence intervals (CI) around the mean value calculated using bootstrapping.  

 Time of 
peak 

Average 
peaking factor 

Median 
peaking factor 

Standard 
deviation 

95% CI  
around mean 

Entire record – all days  
Morning peak 0700 1.93 1.69 1.01 [1.69, 2.18] 
Evening peak 1800 1.65 1.49 0.92 [1.45, 1.89] 
Entire record – weekdays  
Morning peak 0700 2.10 1.42 1.91 [1.88, 2.33] 
Evening peak 1800 1.77 1.19 1.61 [1.58, 1.96] 
Entire record – weekends  
Morning peak 0800 1.39 0.91 1.46 [1.56, 2.25] 
Evening peak 1700 1.39 1.04 1.20 [1.17, 1.63] 
Spring – all days  
Morning peak 0600 2.04 1.38 2.07 [1.50, 2.64] 
Evening peak 1800 1.66 1.22 1.41 [1.28, 2.06] 
Summer – all days  
Morning peak 0600 1.72 1.21 1.95 [1.20, 2.34] 
Evening peak 1800 1.67 1.07 1.42 [1.27, 2.11] 
Autumn – all days  
Morning peak 0700 2.01 1.53 1.70 [1.57, 2.49] 
Evening peak 1800 1.83 1.23 1.62 [1.42, 2.29] 
Winter – all days  
Morning peak 0800 2.09 1.28 2.42 [1.46, 2.85] 
Evening peak 1800 1.44 0.84 1.68 [1.03, 1.97] 
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3 Summary of analysis approaches 
 
This section summarises the different steps undertaken in the analysis of the meter data for the 
disaggregation of leakage and end use. The initial disaggregation was undertaken, where possible, 
for a 2-week period in Winter. This approach ensured a manageable record length, while capturing a 
snapshot of typical use for each household. Following the Winter analysis, this fortnightly analysis 
was extended to the other seasons. This enabled testing of the appliance characteristics to account 
for seasonal variations. Finally, the approach was applied to all seasons within the dataset for that 
dwelling. The key steps in the analysis undertaken for each dwelling are summarised below: 
 

• Undertake time series disaggregation (for selected dwellings) 
• Analyse use for a fortnight in Winter 

o Summarise mean and minimum night flows 
o Identify any potential leakage events 
o Identify any other potential instances of simultaneous use and separate these 
o Disaggregate use based on common event characteristics 
o Check results against time series disaggregation results, if available 

• Extend fortnightly analysis to Spring, Autumn, and Summer (in that order) 
o Check event characteristics and iterate if required 

• Apply event characteristics to entire dataset for dwelling (all seasons) 
 
3.1 Time series disaggregation  
 
To provide a check on the disaggregation results, a time series analysis of the water use time series 
data was undertaken. This manual analysis was carried out over a 2-week period. For each water use 
event, defined as a continuous period of non-zero water use, this analysis involved: 
 

• Calculation of the key event characteristics: 
o Duration 
o Mean flow rate 
o Maximum flow rate 
o Total volume 

• Plotting of the flow rate time series 
 
Although appliance signature data was unavailable for all but one of the dwellings considered within 
this study, the time series analysis provided reliable estimates of the most likely appliances 
associated with the common water use events. Figure 8 illustrates the results of the times series 
analysis for one day in Winter from the record of Dwelling 25, where the raw water use is 
disaggregated into toilet, shower, tap, washing machine and dishwasher events. Given that this 
analysis was undertaken directly on the water use time series data, it was relatively straight-forward 
to identify and separate instances of simultaneous water use, such as a toilet flush during a shower.  
 
The time series analysis results provided calibration data to the automated data analysis, which did 
not involve an examination of the raw time series data, but instead used the key event 
characteristics to identify the most likely use type for each event. The comparison for a 
representative Winter fortnight is shown in Section 4.2. Although time constraints prevented the 
application of the time series analysis to all dwellings for a 2-week period, this analysis was applied 
to many additional dwellings for shorter time periods (2 days to 1 week) to provide checks on the 
automated disaggregation. These checks were undertaken particularly when the data contained 
large “spikes” in water use, or when a particular use type dominated the overall signal.  
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Figure 8 Results of the time series water use disaggregation for one representative Winter day within the overall 2-week 
period. a) Total water use, including all events; b) Toilet events; c) Shower events; d) Tap events; e) Washing machine 
events; f) Dishwasher events.  
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3.2 MNFs and leakage disaggregation 
 
The first step in the overall analysis was to investigate the mean and minimum night flows for a 2-
week period in Winter. This season was selected as a baseline for household water use, as it is less 
likely to include large amounts of irrigation and outdoor use. This facilitates the identification of 
leaks and appliances within the dataset. The survey also contained questions that allowed 
households to self-report any instances of leakage or any drips that they were aware of. In their 
responses, 5 out of the 66 dwellings reported a drip (either a toilet cistern or a tap), while 1 dwelling 
reported a leak (an outside tap).  
 
Minimum night flows within the fortnight allow a quick check on any potential leaks or drips. Figure 
9 illustrates the time series of hourly water use for one of the dwellings. Any long periods with 
consistently high water use (particularly overnight) may indicate the presence of a leak or drip. 
Minimum night flow is defined as “the minimum 1 h flow rate recorded during the night period, 
normally defined as being between midnight and 6am” (Pearson, 2019). Although this often occurs 
between 2am and 4am in urban situations (and the choice of definition did not have a significant 
effect on the MNF results), within the current dataset the minimum night flow across all dwellings 
occurred at 1am. Figure 10 plots the daily mean and minimum night flows for the same dwelling and 
over the same fortnight as in Figure 9, where the minimum night flows are calculated from the 1 h 
flow occurring from 0100 to 0200. Water use during this period is typically very low, such that any 
leaks will be more readily identified from MNF data.  
 

 
Figure 9 Water use over a fortnight in Winter for Dwelling 25, illustrating the temporal variation of hourly water use.  
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Figure 10 Daily mean and minimum night flows for a fortnight in Winter for Dwelling 25. During this period, the mean flow 
was 14.8 litres per hour, while the minimum night flow was 0.4 litres per hour.  

 
An additional check on leaks and drips is to check for the presence of very long water use events, 
particularly those with very low mean flow rates, or to check for the presence of very large numbers 
of single-timestep events that contain a very small flowrate (and hence, volume). The latter may 
indicate a slow leak or drip that did not exceed the volume increment (less than 30 mL for these 
instruments, see Pollard, 2022) during every 10 s timestep. This may include legitimate use such as a 
small overflow from a hot water cylinder. Often such events registered the lowest possible mean 
flowrate for the instrument, corresponding to the minimum volume change within a single timestep.  
 
Events were classified as leaks or drips if the met one of the following criteria: 
 

• A single event had a very long duration and a very low mean flowrate (e.g. 0.2 litres per 
minute), and was not consistent with any other use types for that dwelling.  

• A large number of single-timestep events had very low flows and occurred at a consistent 
frequency (e.g. every 4 timesteps) over a long time period (including the MNF period).  

 
Given more detailed information about the instrumentation, the frequency of occurrence for these 
single-timestep events can be readily converted into an equivalent continuous flow rate for the leak 
or drip. This was not undertaken in the present study, where only the total volume associated with 
leaks or drips was recorded for the dwelling and period of interest. Leaks and drips were more 
challenging to identify for dwellings that contained no data for the Winter period, or dwellings with 
frequent gaps in the measured data.  
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3.3 Event-based use disaggregation  
 
Following the disaggregation of any leaks and drips, the remaining events were detected from the 
water use data. Each event was identified as a continuous period of non-zero water use. In the 
fortnightly analysis, any extremely long events were flagged for checking, as these could also be 
instances of leaks with larger flow rates, or other large use events such as the filling of a swimming 
pool. Given the large number of potential simultaneous events, such as a toilet flush occurring 
during a shower event, a simple “peaks above threshold” approach was applied to automate the 
separation of events. Although this approach was not always effective for events with very 
complicated variations in water use, it worked very well at separating shorter events from long 
events with a consistent flow rate. Figure 11 and Figure 12 illustrate this automated separation 
process for a longer event containing one and two shorter events, respectively.  
 
Following the separation of simultaneous events, events were checked for instances of washing 
machine and dishwasher use. These appliances were more complicated to detect than other 
appliances, given the multiple cycles associated with a single event. All possible individual 
“candidate” events were identified based on their duration, mean and maximum flowrate, and total 
volume. The most common time gaps between these candidate events were identified and checked 
against standard timeframes for dishwasher and washing machine cycles. Where necessary, these 
common time gaps were identified for the entire record (not merely for a fortnight), as a fortnight 
did not typically contain a large enough sample of dishwasher or washing machine events. Finally, 
any candidate events that were separated by one of the identified time gaps were combined into a 
single event and classified as a washing machine or dishwasher event, as appropriate. Given the 
variability in the water use profiles of different types and brands of dishwashers and washing 
machines (beyond the differences between front and top loaders discussed in Pollard, 2022), this 
simplistic approach may have under-represented washing machine and dishwasher use. Where 
possible, the identification of these events was informed by the survey data on the type, size, and 
frequency of use of these appliances. Reliable signature data could further improve this approach.  
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Figure 11 Separation of simultaneous use events: Removal of one short event from a longer event with a consistent 
discharge.  

 
Figure 12 Separation of simultaneous use events: Removal of two short events from a longer event with a consistent 
discharge. 
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Following the identification of dishwasher and washing machine events, all events were checked for 
instances of toilet, shower and tap use. During the initial fortnightly analysis, event characteristics 
(duration, mean and maximum flowrate, and total volume) were determined using survey data and 
data visualisation. Figure 13 illustrates this process for the identification of toilet events within the 
Winter fortnight analysis of Dwelling 25. Survey data indicated that the dwelling contained one small 
dual-flush toilet. The histograms and “kernel density” contours in Figure 13 clearly show the peaks in 
duration, mean and maximum flowrates, and total volumes, that are consistent with toilet flush 
events. In this case, the half-flush and full-flush events can be clearly separated. However, this was 
not possible in all dwellings; toilet events are not separated into half-flush and full-flush events 
within this report.  
 

 
Figure 13 Use of data visualisation to identify the characteristics of dual-flush toilet events. 

Although the example in Figure 13 illustrates the use of data visualisation for the identification of 
toilet events, the same type of “pair plot” was used to identify the most common characteristics for 
shower, dishwasher, washing machine, and tap events. Where required, further details could be 
obtained using a time series plot to check the variation of water use within the event(s) of interest. 
An additional “high flow or outdoor use” category was also created, as it is difficult to differentiate 
between outdoor use and high-flow taps such as in a laundry tub.  
 
After each subsequent use type was identified, the number of events and contribution to the total 
water use volume for that fortnight were also determined. The survey data provided valuable 
information for the use disaggregation, for example self-reported frequency and duration of 
showers in a typical week. Where possible, these survey results were compared to the disaggregated 
event data. 
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Following the disaggregation of the events into their different use components, data were plotted 
and saved for further analysis. As noted at the start of Section 3, after completing the analysis for a 
fortnight in winter, the same approach was applied to 2-week periods within Spring, Summer and 
Autumn (depending on data availability). Where required, the characteristics of each event type 
were refined at this step, to ensure sensible use profiles across all seasons. Finally, the analysis 
approach was automated and applied to the full dataset for the dwelling of interest.  
 
3.4 Machine Learning – Support Vector Machines 
 
Support-vector machines (SVMs) are supervised learning models that perform well in classification 
and regression problems. The supervised learning of SVMs has also been discussed in detail and 
demonstrated to perform well for end-use classification of water use by Gourmelon et al. (2021), 
although the authors noted the need for accurate labelling of end use as they used synthetic data 
from a consumption simulation tool. In the current project, SVM was applied initially to one dwelling 
within the overall dataset (Dwelling 25), using the end-use labels derived from the event-based 
analysis. This is an imperfect approach, and ideally a training dataset of this kind would contain 
independently verified labels for the different end use types.  
 
Often SVM models are trained following exploratory data analysis and visualisation, as illustrated in 
Figure 14 and Figure 15. These figures show all events with volumes larger and smaller than 5 litres, 
respectively, for ease of visualisation. Here the use types appear to be well clustered, which is 
unsurprising given the approach taken in the event-based disaggregation.  
 

 
Figure 14 Training data for SVM model, for all events with a total water use volume larger than 5 litres. 
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Figure 15 Training data for SVM model, for all events with a total water use volume smaller than 5 litres. 

The SVM model was trained as a standard support vector classifier (SVC) with regularisation 
parameters of 1.0. The model used a Radial Basis Function (RBF) kernel. Subsequently, the 
classification was enhanced by performing a grid search to determine the optimal regularisation 
parameters for the classification task. Although time consuming, this provided an improvement in 
overall performance.  
 
3.5 Limitations and opportunities 
 
The main limitation in applying these end use disaggregation approaches to the residential water use 
data was the record length and data quality. Although the 10 second data resolution was excellent, 
many records were missing one or more seasons or had very large gaps in the data. Others also 
contained more frequent missing values, which complicated the end use disaggregation. Any future 
projects would benefit from more complete datasets from each dwelling, as well as possibly an 
increased sample size. Both could help reduce the standard deviations in the results. 
 
Earlier studies on end use disaggregation (Heinrich, 2007) utilised “fingerprint” data or a more 
sophisticated instrument setup to enable direct matching of different appliances to the recorded 
water use. The lack of such data in the current project necessitated the approach described in 
Section 3.3, which did not have an independent “source of truth” for the disaggregated data. 
Significant improvements would be possible if the signatures of different appliances were known for 
each dwelling. This would also help reduce the standard deviations in the results.  
 
Finally, the survey questions were designed to provide insights to assist with the end use 
disaggregation. However, many of the questions were not answered or were answered incompletely 
in the survey. Pollard (2022) describes the lessons learned from the broader project.  



 

26 
 

4 Results 
 
4.1 Minimum night flows and leakage disaggregation 
 
Table 5 presents the mean flow and MNF data for all dwellings, again separated according to 
whether the dwellings were metered and volumetrically charged, while Table 6 presents the 95% 
confidence intervals for the mean flows and minimum night flows. Seasonal minimum night flows 
were consistently higher for dwellings that were not metered and volumetrically charged. However, 
it should be noted that not all dwellings had a sufficient record length to be included in all of the 
seasonal analyses, but all were included in the overall MNF analysis.  
 
Table 5 Summary of mean and minimum night flow results, considering all dwellings. Standard deviations are reported 
beside the average hourly flows and average MNFs. 

 
Average 

Hourly Flow 
(litres/hour) 

Median Hourly 
Flow 

(litres/hour) 

Average MNF 
(litres/hour) 

Median MNF 
(litres/hour) 

Entire record 
All households 25.9 (𝜎𝜎=21.2) 19.7 7.3 (𝜎𝜎=18.2) 2.4 
Metered and 
volumetrically charged 21.7 (𝜎𝜎=14.6) 17.5 6.9 (𝜎𝜎=21.7) 1.9 

Not metered and 
volumetrically charged 31.0 (𝜎𝜎=26.4) 24.1 7.7 (𝜎𝜎=13.4) 2.6 

Spring 
All households 25.3 (𝜎𝜎= 21.1) 17.4 5.1 (𝜎𝜎= 9.9) 1.4 
Metered and 
volumetrically charged 17.6 (𝜎𝜎=9.9) 16.0 2.3 (𝜎𝜎=2.9) 1.2 

Not metered and 
volumetrically charged 30.4 (𝜎𝜎=25.4) 17.5 6.8 (𝜎𝜎=12.5) 1.7 

Summer 
All households 33.4 (𝜎𝜎=29.7) 24.1 22.8 (𝜎𝜎=49.6) 2.1 
Metered and 
volumetrically charged 25.0 (𝜎𝜎=14.9) 23.7 3.5 (𝜎𝜎=5.0) 1.3 

Not metered and 
volumetrically charged 43.0 (𝜎𝜎=38.8) 30.5 21.3 (𝜎𝜎=72.0) 3.0 

Autumn 
All households 19.9 (𝜎𝜎=10.8) 17.7 3.5 (𝜎𝜎=5.7) 1.5 
Metered and 
volumetrically charged 18.2 (𝜎𝜎=9.1) 16.3 3.3 (𝜎𝜎=7.7) 1.8 

Not metered and 
volumetrically charged 21.9 (𝜎𝜎=12.8) 20.5 3.6 (𝜎𝜎=3.9) 1.3 

Winter 
All households 23.9 (𝜎𝜎=29.6) 17.4 7.2 (𝜎𝜎=21.5) 1.9 
Metered and 
volumetrically charged 17.8 (𝜎𝜎=9.4) 15.8 3.3 (𝜎𝜎=3.6) 1.9 

Not metered and 
volumetrically charged 29.2 (𝜎𝜎=41.7) 17.5 10.4 (𝜎𝜎=31.3) 1.4 
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Table 6 95% confidence intervals for mean and minimum night flows across all dwellings.  

 

Average 
Hourly Flow 
(litres/hour), 

95% 
confidence 

interval,  
t-distribution 

Average MNF 
(litres/hour), 

95% 
confidence 

interval,  
t-distribution 

Average 
Hourly Flow 
(litres/hour), 

95% 
confidence 

interval,  
bootstrap 

Average MNF 
(litres/hour), 

95% 
confidence 

interval,  
bootstrap 

Entire record 
All households [20, 31] [2, 11] [21, 31] [4, 12] 
Metered and 
volumetrically charged [16, 26] [0, 14] [18, 27] [2, 15] 

Not metered and 
volumetrically charged [21, 40] [2, 12] [22, 41] [4, 13] 

Spring 
All households [19, 31] [2, 7] [20, 31] [3, 8] 
Metered and 
volumetrically charged [13, 22] [0, 3] [14, 22] [1, 4] 

Not metered and 
volumetrically charged [20, 40] [2, 11] [22, 40] [3, 1] 

Summer 
All households [24, 42] [0, 26] [26, 42] [3, 27] 
Metered and 
volumetrically charged [18, 31] [1, 5] [20, 31] [2, 6] 

Not metered and 
volumetrically charged [25, 60] [0, 53] [29, 60] [4, 53] 

Autumn 
All households [17, 22] [1, 4] [17, 23] [2, 5] 
Metered and 
volumetrically charged [15, 21] [1, 4] [15, 21] [2, 5] 

Not metered and 
volumetrically charged [16, 27] [0, 6] [17, 27] [1, 7] 

Winter 
All households [15, 32] [1, 13] [18, 33] [3, 14] 
Metered and 
volumetrically charged [14, 21] [1, 4] [15, 21] [2, 5] 

Not metered and 
volumetrically charged [11, 47] [0, 23] [17, 48] [2, 25] 

 
At least one of these dwellings had a very large MNF, hence distorting the average values and 
widening the confidence intervals. The difference based on metering and volumetric charging 
reduced considerably (and the trend was more consistent with the seasonal data) when considering 
the median instead of mean values, implying that the results were skewed by a small number of 
households with much higher use. The standard deviations in the reported data were generally high, 
although these usually reduced when considering the seasonal data separately for dwellings that 
were both metered and volumetrically charged. The highest standard deviations were obtained 
during Summer for MNFs for households that were not metered and volumetrically charged. This 
may indicate the use of overnight irrigation or similar in some of these properties.  
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Figure 16 also shows the distribution of mean flows and MNFs, including all dwellings, while Figure 
17 shows the same information differentiated by the metering and volumetric charging.  
 

 
Figure 16 Mean and minimum night flow distributions across all dwellings.  

 

  
Figure 17 Mean and minimum night flow distributions across all dwellings, considering whether the dwelling was metered 
and volumetrically charged (“Yes”, blue colour) or was not (“No”, orange colour).  
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Periods of high MNF are indicative of potential leaks, particularly during the Winter months when 
sustained outdoor use and irrigation are less likely. This may be elucidated by plotting the daily 
mean flow and MNF data (see Figure 10) over the entire record length. Figure 18 shows data for a 
dwelling where the MNF was elevated during Spring and Summer. More detailed information about 
the water use during this period would be required to determine whether a leak was present or not. 
However, the data in Figure 19 appear to show the presence of a progressive leak, with a steady 
increase in MNF during Autumn and Winter. Methods for determining the stationarity of time series 
data (e.g. Dickey & Fuller, 1979) could be used to determine whether water use meets the criteria 
for a progressive leak. However, this relies on long continuous data records that span many seasons; 
hence, a simple check on mean flows and MNFs is likely to be sufficient for leak checking purposes. 
See also Appendix B for an additional visualisation approach.  
 

 
Figure 18 Mean flow and MNF over a long period in time, exhibiting elevated use during Spring and Summer.  

 
Figure 19 Mean flow and MNF over a long period in time, providing evidence of a possible progressive leak.  

The disaggregation of end use types enables an assessment of the most common use types during 
the MNF period. Many dwellings only contained contributions from toilet, tap and leaks/drips during 
this period. However, some dwellings contained significant contributions that were consistent with 
other appliance characteristics. Given that some dwellings contained very high MNF contributions, 
the pie chart in Figure 20 considers the relative, rather than absolute, contributions to water use 
within the MNF period for each dwelling. This avoids the end use types being dominated by a single 
use associated with the dwellings that had very large MNFs (such as the one illustrated in Figure 19). 
Figure 20 presents a much more “mixed” use profile than would be expected for the MNF period. 
These results could be refined by implementing an upper limit on the MNF of dwellings included in 
this analysis, hence only including dwellings with “normal” MNF use. Other improvements relate to 
the general disaggregation of end use types, as discussed elsewhere.  
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Figure 20 Relative contributions to MNF use, averaged over all dwellings. 

4.2 Comparison of time series and event-based use disaggregation methods 
 
The time series analysis described in Section 3.1 is a manual and time-consuming analysis method, 
hence this was only applied to a fortnight in one dwelling and to isolated days/weeks in other 
dwellings. The event-based analysis approach initially requires some manual checks on the most 
common water use patterns in each dwelling but can subsequently be scaled up to a longer period in 
an automated manner. The more detailed time series analysis therefore provides a good calibration 
of the event-based analysis. Figure 21 compares the two approaches for a 2-week period in Winter 
for Dwelling 25. Unsurprisingly, the agreement is very good. Low-flow events that may have been 
leaks were removed prior to the start of the time series analysis; however, these had a negligible 
contribution to the total water use within this fortnight. The dishwasher and washing machine 
contributions determined within the event-based analysis were slightly lower than those of the time 
series analysis, while the proportion of shower use was slightly higher. However, overall, the 
agreement between the two analysis methods is excellent, providing confidence in the application of 
the event-based disaggregation to all dwellings over all seasons. The time series analysis approach 
was also applied for isolated checks on the disaggregated use of several dwellings within the dataset. 

 
Figure 21 Comparison of time series analysis (left) with event-based analysis (right) in terms of the breakdown of water use 
within a Winter fortnight for Dwelling 25.  
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4.3 End use breakdown for event-based analysis 
 
Figure 22 presents the end uses identified from the event-based analysis across all dwellings and 
seasons, while Figure 23 provides a seasonal breakdown of the end use disaggregation results. Both 
consider the relative contributions to use for each dwelling.  
 
The results of this analysis are broadly comparable with the data from previous end use studies such 
as Heinrich (2007) and Roberti (2010), the results of which are illustrated in Figure 24 (these are also 
discussed in Pollard, 2022). Table 7 summarises the use breakdown for Summer and Winter. For 
example, leaks and drips accounted for approximately 2% of water use in the current study, which is 
similar to the 2-4% range from previous studies. However, there are some important differences 
which merit further investigation. The current study found much lower washing machine use (13%) 
than previous studies (20-25%). This may be due to increased uptake of front loader washing 
machines but may also be caused by limitations in the event-based identification process. These 
limitations could be improved by the provision of robust appliance signature data. As a result of the 
reduction washing machine use, several other end use types were increased relative to previous 
studies. These include tap, shower, and toilet events.  
 

 
Figure 22 End uses identified from event-based analysis.  

Some predictable seasonal trends are well captured by the event-based disaggregation approach, 
including the increase in outdoor use in Summer. Although leaks and drips were present throughout 
the dataset, these were largest in a relative sense during Winter. Although previous studies showed 
an increase in the proportion of shower use during Winter, results from the current study indicate 
that shower use was relatively consistent across the different seasons.  
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Figure 23 Seasonal variation in end use from the application of the event-based disaggregation approach to all dwellings. 
The seasons shown are a) Spring, b) Summer, c) Autumn, and d) Winter.  

 
Figure 24 End use breakdown from a) Kapiti during the Summer (Heinrich, 2007), b) Kapiti during the Winter (Heinrich, 
2007), c) Auckland during the Summer (Roberti, 2010), d) Auckland during the Winter (Roberti, 2010).  
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Table 7 Numerical comparison of current results with previous studies.  

Use type Current study Kapiti study (Heinrich, 
2007) 

Auckland study 
(Roberti, 2010) 

Winter 
Toilet 21% 19% 18% 
Shower  27% 27% 33% 
Tap 16% 13% 16% 
Outdoor 10% 9% 6% 
Leak/drip 8% 4% 2% 
Washing machine 14% 24% 23% 
Dishwasher 2% 1% 1% 
Summer 
Toilet 20% 17% 17% 
Shower  27% 22% 26% 
Tap 17% 12% 12% 
Outdoor 18% 22% 18% 
Leak/drip 3% 3% 3% 
Washing machine 13% 21% 21% 
Dishwasher 2% 1% 1% 

 
Table 8 provides more detailed information relating to the overall use breakdown of Figure 22 and 
the seasonal use breakdown of Figure 23. This table also provides the standard deviation in addition 
to the mean value, calculated across all eligible dwellings (not all dwellings had sufficient data in all 
of the seasons), and the 95% confidence intervals in the mean (calculated using the t-distribution). 
As demonstrated elsewhere in this report, the relative use by the different dwellings exhibited 
significant variability. This may partly be explained by some dwellings not using a washing machine 
or dishwasher, or not having significant outdoor use. Others may have had significant outdoor use as 
a proportion of their total use, or a larger than average use of one of the other appliances. Although 
leaks and drips had a relatively small relative contribution to average water use, these also exhibited 
significant variability, indicating that some dwellings may have had relatively large water losses. This 
is the most likely reason for the large leak/drip contribution to Winter use in the current study.  
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Table 8 Mean, median and standard deviation associated with the water use identified using the event-based analysis.  

Use type Mean value Standard deviation 95% confidence 
interval in mean 

Entire dataset 
Dishwasher 2.9% 4.4% [0.7%, 5.1%] 
Washing Machine  12.6% 6.0% [9.6%, 15.6%] 
Toilet 24.3% 13.0% [17.9%, 30.8%] 
Shower 31.4% 12.4% [25.3%, 37.5%] 
Tap  18.8% 11.4% [13.2%, 24.5%] 
High flow or outdoor 7.3% 7.7% [3.4%, 11.1%] 
Leak/Drip 2.1% 4.5% [0.0%, 4.4%] 
Undefined 0.5% 0.6% [0.2%, 0.8%] 
Spring 
Dishwasher 2.1% 3.5% [0.9%, 3.3%] 
Washing Machine  15.1% 7.5% [12.5%, 17.6%] 
Toilet 24.2% 11.0% [20.5%, 28.0%] 
Shower 28.7% 12.3% [24.4%, 32.9%] 
Tap 15.8% 10.8% [12.1%, 19.5%] 
High flow or outdoor 9.1% 9.3% [5.9%, 12.3%] 
Leak/Drip 4.2% 8.0% [1.5%, 7.0%] 
Undefined 0.7% 1.1% [0.4%, 1.1%] 
Summer 
Dishwasher 1.9% 3.1% [0.9%, 3.0%] 
Washing Machine  13.0% 7.8% [10.3%, 15.7%] 
Toilet 19.7% 11.4% [15.8%, 23.6%] 
Shower 27.1% 12.3% [22.9%, 31.3%] 
Tap 16.9% 13.2% [12.4%, 21.4%] 
High flow or outdoor 17.8% 18.5% [11.5%, 24.2%] 
Leak/Drip 3.0% 9.9% [0.0%, 6.4%] 
Undefined 0.6% 1.3% [0.2%, 1.1%] 
Autumn 
Dishwasher 2.2% 3.2% [1.2%, 3.2%] 
Washing Machine  13.2% 8.3% [10.5%, 15.9%] 
Toilet 23.0% 11.7% [19.3%, 26.8%] 
Shower 27.8% 11.3% [24.2%, 31.4%] 
Tap 16.8% 11.5% [13.1%, 20.4%] 
High flow or outdoor 9.1% 11.6% [5.4%, 12.8%] 
Leak/Drip 5.5% 10.9% [2.0%, 8.9%] 
Undefined 2.4% 11.9% [0.0%, 6.2%] 
Winter 
Dishwasher 2.2% 3.5% [1.0%, 3.3%] 
Washing Machine  13.7% 7.9% [11.1%, 16.3%] 
Toilet 21.2% 12.9% [17.0%, 25.5%] 
Shower 27.0% 13.1% [22.7%, 31.3%] 
Tap 15.9% 12.4% [11.8%, 20.0%] 
High flow or outdoor 9.5% 14.0% [4.9%, 14.1%] 
Leak/Drip 8.3% 16.3% [2.9%, 13.6%] 
Undefined 2.2% 10.2% [0.0%, 5.6%] 
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Although the pie charts in Figures 22 and 23 show the relative contributions of the different use 
types to the overall and seasonal water use, they do not capture the changing total water use during 
the year or within an average day. Figure 25 shows the variation in water use over the year, 
averaged over all dwellings. It should be noted that few of the dwellings contained a complete 
dataset over a full year; hence, the results are averaged over different dwellings’ use in different 
months. A more complete dataset would help to provide more reliable results. However, the general 
patterns of enhanced consumption during the Spring and particularly Summer, with the lowest 
consumption in Winter, are well captured. The increase in outdoor use in Spring and Summer is also 
to be expected, as is the increase in absolute volumes used for showers in these months (even if the 
relative contribution of shower events remained unchanged).  
 
Table 9 provides a seasonal summary of the data shown in Figure 25, including the mean, median 
and standard deviation across the entire dataset and the 95% confidence interval in the mean 
(calculated using the t-distribution). It is important to note that the daily resampled data below were 
calculated after removing the effects of any leaks and drips, such that these are not included. It is 
also clear that the high average outdoor water use during the summer months was due to very high 
use in some dwellings, leading to very large standard deviations for this use type. As noted 
elsewhere in this report, the variability was very high across the dataset in general, even in Winter.    
 

 
Figure 25 Annual variation in water use, separated by use type.  

Table 9 Summary of daily volumes associated with each use type, reporting mean and mean values along with standard 
deviations for the entire dataset and separated by season.  

Use type 
Mean daily 
volume (litres) 

Median daily 
volume (litres) 

Standard 
Deviation (litres) 

95% confidence 
interval in mean 
(litres) 

Entire dataset  
Dishwasher 6.1 4.1 6.1 [4.1, 8.1] 
Washing 
Machine 54.1 37.2 51.9 

[37.0, 71.1] 

Toilet 80.7 56.5 55.2 [62.6, 98.8] 
Shower 102.1 99.9 61.5 [81.9, 122.3] 
Tap 46.3 41.7 31.9 [35.8, 56.8] 
High 
Flow/Outdoor 54.2 17.4 87.0 

[25.6, 82.8] 

Undefined 8.3 1.2 27.2 [-1.6, 18.1] 
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Table 9 cont. Summary of daily volumes associated with each use type, reporting mean and mean values along with 
standard deviations for the entire dataset and separated by season.  

Spring  
Dishwasher 3.8 2.0 4.8 [2.0, 5.6] 
Washing 
Machine 43.1 22.4 55.0 

[22.4, 63.9] 

Toilet 58.0 20.5 63.9 [33.9, 82.0] 
Shower 67.4 39.3 70.3 [40.4, 94.5] 
Tap 27.0 13.1 33.4 [14.4, 39.6] 
High 
Flow/Outdoor 31.9 6.7 60.9 

[8.9, 54.9] 

Undefined 7.6 2.0 13.9 [1.5, 13.6] 
Summer  
Dishwasher 5.6 3.2 5.6 [3.4, 7.7] 
Washing 
Machine 61.4 24.4 81.4 

[30.7, 92.0] 

Toilet 73.8 49.3 65.1 [49.3, 98.4] 
Shower 96.8 68.9 73.9 [68.9, 124.7] 
Tap 56.4 24.9 80.8 [25.9, 86.9] 
High 
Flow/Outdoor 103.0 23.6 179.0 

[35.5, 170.5] 

Undefined 3.9 1.9 5.6 [1.3, 6.4] 
Autumn  
Dishwasher 2.9 2.3 2.1 [2.2, 3.7] 
Washing 
Machine 31.3 15.7 38.9 

[17.6, 45.0] 

Toilet 48.5 31.2 45.7 [32.3, 64.6] 
Shower 56.1 35.2 50.2 [38.5, 73.8] 
Tap 22.9 17.4 15.6 [17.4, 28.4] 
High 
Flow/Outdoor 36.5 8.6 71.0 

[11.5, 61.4] 

Undefined 17.9 1.5 39.4 [1.4, 34.3] 
Winter  
Dishwasher 3.7 2.9 3.9 [2.3, 5.2] 
Washing 
Machine 36.0 19.2 46.2 

[19.2, 52.8] 

Toilet 52.9 29.2 53.3 [33.5, 72.3] 
Shower 65.4 45.7 57.7 [44.4, 86.4] 
Tap 27.2 20.6 23.6 [18.7, 35.8] 
High 
Flow/Outdoor 21.8 6.5 34.9 

[9.0, 34.5] 

Undefined 5.1 1.8 7.5 [1.9, 8.2] 
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Considering the variations in water use over a day, Figure 26 presents the daily water use profiles 
(diurnal curves) showing the breakdown by use type. Although differences in water use between 
households tend to “smooth” these results, the results appear to conform to expectations. There is a 
peak in overall water use, particularly due to showers, in the morning, while any high flow or 
outdoor use tends to be concentrated in the afternoon. Figure 27 shows the higher peaks (with 
more prominent shower events) during weekdays, while Figure 28 shows the smaller peaks and 
more consistent hourly use during weekends.   

 
Figure 26 Hourly fluctuations in water use, broken down by use type and averaged across all dwellings.  

 
Figure 27 Hourly fluctuations in water use during weekdays, broken down by use type and averaged across all dwellings. 

 
Figure 28 Hourly fluctuations in water use during weekends, broken down by use type and averaged across all dwellings. 
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4.4 Frequency of use for event-based analysis 
 
The temporal resolution of the dataset allows calculation of the use frequencies associated with the 
different appliances identified during the disaggregation process. These use frequencies are 
summarised in Table 10 on a per-dwelling basis, and in Table 11 on a per-person basis. In both cases, 
the 95% confidence interval in the mean is calculated using the t-distribution. Although most use 
frequencies were calculated daily, the washing machine and dishwasher use frequencies were 
calculated weekly, given the less frequent typical use of these appliances.  
 
All use types exhibit large standard deviations, again demonstrating the significant variability in the 
dataset and the likely value in more targeted smart meter investigations in the future. In some cases 
(shower, washing machine and high flow or outdoor use), large outliers in the dataset contributed to 
these large standard deviations; these outliers also increased the average use frequency compared 
to the median use frequency. These may indicate some incorrect classifications arising from the 
event-based disaggregation. However, given the data quality and quantity issues noted elsewhere in 
this report and lacking independent data on appliance signatures, a small amount of incorrect 
classification is somewhat unavoidable. Although these data could also have been broken down by 
season, for instance to investigate changes in the frequency of (say) showers or outdoor use 
between seasons (particularly Summer and Winter), this was not undertaken in the current project.  
 
The tap use frequencies reported in Table 10 are very high, in part because many events that did not 
meet the criteria for leaks and drips (but may not have resulted from tap use) were categorised as 
tap use by default. Given the overlap in tap and leak/drip signatures, it is challenging to completely 
separate these use types. Outliers may also arise from usage patterns such as cleaning jobs where a 
cloth or sponge must be regularly rinsed.  
 
Table 10 Frequency of use per dwelling derived from event-based analysis, where the 95% confidence interval in the mean 
value is calculated using the t-distribution. 

 Average use 
frequency 

Median use 
frequency 

Standard 
deviation 

95% confidence 
interval in mean 

Toilet 14.7 per day 10.7 per day 10.3 per day [11.5, 18.0] 
Shower  2.0 per day 1.4 per day 2.6 per day [1.2, 2.9] 
Tap (can include 
leaks) 

118.8 per day 106.4 per day 75.1 per day [95.1, 142.5] 

High flow or 
outdoor 

2.8 per day 2.9 per day 3.4 per day [2.3, 4.5] 

Washing machine 3.4 per week 2.2 per week 3.5 per week [3.1, 5.2] 
Dishwasher 4.2 per week 2.9 per week 3.4 per week [1.5, 4.2] 
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Table 11 Frequency of use per person derived from event-based analysis, where the 95% confidence interval in the mean 
value is calculated using the t-distribution.. 

 Average use 
frequency 

Median use 
frequency 

Standard 
deviation 

95% confidence 
interval in mean 

Toilet 6.5 per day 5.1 per day 4.9 per day [4.8, 8.2] 
Shower  0.7 per day 0.6 per day 0.5 per day [0.5, 0.9] 
Tap (can include 
leaks) 

57.1 per day 44.2 per day 42.4 per day [42.3, 71.9] 

High flow or 
outdoor 

1.0 per day 1.2 per day 1.4 per day [0.9, 1.6] 

Washing machine 1.3 per week 1.0 per week 1.0 per week [1.1, 2.1] 
Dishwasher 1.6 per week 1.2 per week 1.4 per week [0.6, 1.5] 
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4.5 Support Vector Machines  
 
Confusion matrices and classification reports are standard approaches for assessing the performance 
of supervised learning techniques. In the confusion matrices shown in Table 10, the diagonals 
(shaded for ease of interpretation) represent the number of correctly classified events of each kind, 
while any off-diagonal entries represent incorrectly classified events. Although the standard 
regularisation parameters led to perfect classification of some event types, they also generated far 
more incorrect end-use classifications than the optimised parameters determined using a grid 
search. As the classification report in Table 11demonstrates, using standard values to assess the 
effectiveness of supervised learning techniques, the optimised parameters provided a significant 
improvement in performance for end-use classification (consistent with Gourmelon et al., 2021). 
Although the results should be interpreted with caution, given that the training and test data were 
generated themselves using an event-based disaggregation (rather than being supplied directly as 
part of the dataset), the performance of the SVM model is nonetheless impressive. This supervised 
learning approach also offers an advantage over unsupervised learning approaches, given the 
unbalanced nature of the dataset (where some use types dominate in terms of the number of 
events). Figure 29 compares the end use breakdown for the test dataset as determined by the SVM 
models to the original use labels.  
 

Table 12 Confusion matrices for SVM end-use disaggregation for Dwelling 25, using standard parameters (1.0 for 
regularisation parameters), and using parameters optimised through a grid search.  

Standard parameters 
200 0 0 0 0 0 

1 7 8 108 133 0 
1 0 291 46 14 0 

53 0 35 28259 7 0 
0 0 0 773 1007 0 
0 0 0 0 0 32 

Optimised parameters through grid search 
199 0 0 1 0 0 

0 224 8 17 8 0 
0 3 349 0 0 0 
0 11 0 28341 2 0 
0 2 0 6 1772 0 
0 0 0 3 0 29 
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Table 13 Classification report for SVM end-use disaggregation for Dwelling 25.  

Standard parameters 
  precision recall f1-score support 
Dishwasher 0.78 1 0.88 200 
High_Flow_Or_Outdoor 1 0.03 0.05 257 
Shower 0.87 0.83 0.85 352 
Tap 0.97 1 0.98 28354 
Toilet 0.87 0.57 0.68 1780 
Washing_Machine 1 1 1 32 
          
accuracy     0.96 30975 
macro avg 0.92 0.74 0.74 30975 
weighted avg 0.96 0.96 0.96 30975 

Optimised parameters through grid search 
  precision recall f1-score support 
Dishwasher 1 0.99 1 200 
High_Flow_Or_Outdoor 0.93 0.87 0.9 257 
Shower 0.98 0.99 0.98 352 
Tap 1 1 1 28354 
Toilet 0.99 1 0.99 1780 
Washing_Machine 1 0.91 0.95 32 
          
accuracy     1 30975 
macro avg 0.98 0.96 0.97 30975 
weighted avg 1 1 1 30975 

 
 
 

 
Figure 29 Contributions of different appliances to total residential water use for Dwelling 25, for use types classified by a) 
the event-based analysis (used to train the SVM model), b) the standard SVM model using regularisation parameters of 1.0, 
and c) the SVM model using parameters optimised through a grid search.  
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5 Opportunities for further research 
 
This report has completed the classification of residential water use into standard appliance types 
using the dataset of Pollard (2022). Three approaches were followed: 
 

• Time series analysis 
• Event-based analysis 
• Support Vector Machines supervised learning classification 

 
The three approaches were used in a complementary manner within this project, with the time 
series analysis used to calibrate and check the results of the event-based analysis, which in turn 
provided training and testing data for the SVM classification model. However, this approach is 
relatively limited, lacking a “source of truth” for the use types. With the recent proliferation of smart 
devices, particularly smart water meters, opportunities exist to engage end-users directly in the 
provision of labelled water use data. The outsourcing of the classification to the end user may be 
difficult from the perspective of generating reliable data over long periods. However, the 
significantly larger sample size, as well as the significant reduction in effort in post-labelling of 
events, may offset this issue.  
 
In addition to assisting in the labelling of events, engaging end users with smart technology may 
have additional benefits. Many electricity consumers now receive regular personalised summaries of 
their electricity use, along with suggestions for reducing their energy bill. A similar approach applied 
to water use would promote conservation through awareness of actual consumption patterns, while 
also providing rapid data that could determine the presence of a large leak (saving water for the 
consumer and provider alike).  
 
This report has barely scratched the surface of the opportunities available when applying data 
analysis to residential water use. It is therefore hoped that this will help to start (or continue) 
discussions on this topic, rather than being taken as the last word.  
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Appendix A: Diurnal curves 

Peaking factors 

 
Figure 30 Seasonal variation in peaking factor diurnal curves, where the shaded area represents the 95% confidence interval 
around the mean. 
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Figure 31 Weekday/weekend variation in peaking factor diurnal curves, where the shaded area represents the 95% 
confidence interval around the mean. 
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Flowrates per dwelling 
 

 
Figure 32 Seasonal variation in hourly volume diurnal curves, where the shaded area represents the 95% confidence interval 
around the mean. 
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Figure 33 Weekday/weekend variation in hourly volume diurnal curves, where the shaded area the 95% confidence interval 
around the mean. 
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Flowrates per person 
 

 
Figure 34 Seasonal variation in per-person hourly volume diurnal curves, where the shaded area represents the 95% 
confidence interval around the mean. 
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Figure 35 Weekday/weekend variation in per-person hourly volume diurnal curves, where the shaded area represents the 
95% confidence interval around the mean. 
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Appendix B: Leak visualisation using heatmap 
 
Although not included in the preceding report, another way to enable leak detection (courtesy of 
Andrew Pollard) is a “heat map” plot of water use over time, where the data are plotted against the 
hour of the day. Figure 36 provides an example of this for Dwelling 35. This example would enable 
the identification of relative large leaks, although very small drips would be unlikely to be detected.  

 
 
Figure 36 Heatmap plot to enable the identification of leaks within the water use dataset, where missing values are white.  
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Although the colour scale used in Figure 36 could be modified to include a reduced upper limit for 
the identification of very small leaks or drips, another approach could be to plot the heatmap data 
using a logarithmic colour scale. Figure 37 shows an example of a logarithmic colour scale, with the 
same upper limit as used in Figure 36. This improves the resolution of very small flow events, 
although any “zero use” values must be replaced with a small but non-zero value or removed 
entirely. Zero values have been filled with white (the same as missing values) in Figure 37. 

 
Figure 37 Heatmap plot to enable the identification of leaks within the water use dataset, using a logarithmic colour scale 
to facilitate easier identification of small leaks or drips. All zero or missing values are denoted by a white colour.  
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