

Advances in Stormwater Management: Fusion of Numerical Modelling and Internet of Things

2023-09-19, Water New Zealand Association Webinar

Yoshihiro Shibuo, Kochi University

Presentation Outline

- ☐ Introduction
- ☐ Integrated Urban Flood Modelling
- ☐ Application of Internet of Things
- ☐ Big Data in Earth Sciences
- ☐ Fusion of Numerical Modelling & IoT
- Summary

Advances in Stormwater Management

Introduction

Physical Geography

Climate Classification

World map of Köppen-Geiger climate classification

Contact: Murray C. Peel (mpeel@unimelb.edu.au) for further information

DATA SOURCE : GHCN v2.0 station data

Temperature (N = 4,844) and Precipitation (N = 12,396)

PERIOD OF RECORD : All available

MIN LENGTH: ≥30 for each month.

RESOLUTION: 0.1 degree lat/long

Average Annual Precipitation

Typhoons and Cyclones

Typhoon Hagibis, 2019

Cyclone Gabrielle, 2023 Source, null earth

Recent Example Cases: Typhoon Hagibis, 2019

Occurrence period :Oct.6, 3:00 - Oct. 13, 12:00

Life span: 7 days 9 hours

Typhoon #19: Water erupts from manholes. Inundation in Hachioji, Tokyo (Oct. 12, 2019)

https://www.youtube.com/watch?v=7Cwy5NNjLUc

Mortality and Capital Damage by Disasters

Mortality has decreased by various measures, but capital damage keep increasing

9/20/2023

Water New Zealand Webinar

Trends in Torrential Rainfall in Japan

Frequency of rainfall event with intensity more than 50mm/hr

Source, JMA

Advances in Stormwater Management

Integrated Urban Flood Modelling

Flood contributing factors and sub-models

Schematic Image of Seamlessly Integrated Model

Integrated urban flood simulation model

The "Seamless Model"

Real-time analysis of urban flood using a simulation model that integrates elements of river, sewerage systems and coastal hydraulics.

Sanuki et al., J-JSCE Ser. B1 (Hydraulic Engineering) (2016)

Seamless model analysis

Rapid and integrated water hazard prediction

Water level and flow rate in river Water level in drainage pipes and pump discharge Fluvial (River) flood and Pluvial (Surface) flood

Multi-purpose retarding basin

Nippa Suehiro Stormwater Storage Pipe

Model Application to Typhoon 18, 2014

Typhoon 18 in 2014: 360 mm of cumulative rainfall with 50mm/hr intensity

Model Application to Typhoon 18, 2014

Typhoon 18 in 2014: 360 mm of cumulative rainfall with 50mm/hr intensity

Model Validation: Rivers and Flood Control Facilities

WEB-DHM discharge at Ochiai bridge

Seamless model water level at Kamenoko bridge

Modeled Flood Control Volumes

	Observed (m³)	Model (m³)
Retarding Basin	1,536,000	1,785,000
Storm water Retention Pipe	380,000	388,800

Advances in Stormwater Management

Application of Internet of Things

Realtime Water Level Monitoring in Stormwater Drainage

^{*} Smart Manhole Cover was jointly developed by Tokyo Metropolitan Sewerage Service Corporation, Hinode Ltd., and Meiden Corporation.

Meiden Coorp.

Examples of Smart Manhole Cover Installation

Confluent type sewage pipe (φ300mm), water level

Sewage bypass pipe $(\phi 1,100 \text{ mm})$, flow (commercial power reception)

Meiden Coorp.

Features of Smart Manhole Cover

- Manhole with a communication device, an antenna with a built-in battery on the backside of manhole lid, serving as IoT
- Automatic switching function responding to wet and dry weathers for prolonging battery life

Features of Smart Manhole Cover

Meiden Coorp.

Observed Water Level on Cloud file server,

Advances in Stormwater Management

Big Data in Earth Sciences

Data Integration and Analysis System (DIAS)

専門 語辞

Data Integration & Analysis System (DIAS) aims at collecting, archiving, integrating and analyzing massive amount of data observing the earth, and convert data into information useful for the society for global-scale environmental problems, risk management for large-scale natural disasters, and so on

Data Set Examples

専門用 リモートセンシンク Himawari 8 **Real-time Rainfall GCM Output** DIAS Data Integration and Analysis System Program DIAS Data Integration and Analysis System Program 2015/09/09 16:00 CMIP5 Data Analysis System Latest Himawari-8 Images Some examples include but not limited to CMIP3: 34TB The Latest Himawari-8 Images page provides still images and animations CMIP5: 1.6PT visual and infrared sensors of the geostationary weather satellite Himaw the-minute movements of typhoon and clouds online

Satellite Imagery by Himawari

X band Multi-Parameter Radar

DIAS as Information Fusion Reactor

Value Creation from Information Explosion (Large and Diverse Information) **Information Fusion Reactor** By Prof. Kitsuregawa

Supporting Decision Making in Stormwater Management by Integrating Big Data and Hydrological Modeling

Advances in Stormwater Management

Fusion of Numerical Modelling & Internet of Things

Real-time water level sensing and Flood Prediction

- · Real-time sensing of water level in drainage pipe using manhole IoT
- Water level monitoring system with wireless network combined with LTE / LPWA

Big Data Management on DIAS

Application to Recent Flood Events

September 2019 Typhoon #15 (FAXAI)

177.5mm@Yokohma (72.0mm/hr Intensity)

https://weathernews.jp/s/topics/201909/070125/

October 2019 Typhoon #19 (HAGIBIS)

221mm@Yokohma (27.5mm/hr Intensity)

https://weathernews.jp/s/topics/201910/110185/

Model Validation: Water Level in Drainages

Improve accuracy by tuning model parameters

Model Validation: Water Level in Drainages

Improve accuracy by tuning model parameters

Introduction of Data Assimilation method

Establishment of <u>urban flood prediction model</u> integrating <u>data</u> assimilation method using rainfall forecast information

- In order to predict the urban flooding due to torrential rainfall, we introduce data assimilation method which inputs actual observation value and performs real-time simulation.
- Data assimilation integrates observed information into numerical simulation allowing to explain better explanation of the physical status.
- This method can improve the model forecast accuracy.

Databank-based Data Assimilation

- We developed a new Data Assimilation method, in which water level distribution are replaced with the simulation set with least RMSE in DB.
- Water level distribution in the sewer network are simulated in advance with numerous numbers of hypothetical precipitation patterns for DB.

Validation of the Model

- Data assimilation at every 30min improved accuracy drastically
- ✓ Hydrographs with multiple flood peaks was difficult to reproduce, but now possible with data assimilation

(Shituo et al., 2019)

Kitatsuna P

Fusion of Real-time Sensing and Numerical Modelling

- ✓ Real-time data in sewer pipe senor gives opportunity to extract most plausible physical status from numerous simulation scenarios, prepared in advance
- ✓ High speed and high accuracy sewer network modeling is now realized.

Example Use of Big Data for Flood Countermeasure

Integrated Flood analysis against Typhoon Hagibis, 2019

Real-time Prediction and Control of Urban Flood Risk

Advances in Stormwater Management

Summary

- ✓ Importance of maximum use of available countermeasures both structural and non-structural
- ✓ Integrated urban flood modeling against river flooding, urban flooding, and storm surge
- ✓ Use of Big Data to create information wisdom
- ✓ Real-time sensing in unmonitored drainage network by manhole IoT
- ✓ Real-time data provides opportunity to improve forecast accuracy through Data Assimilation
- ✓ Fusion of numerical modelling and IoT for realization of real-time countermeasure against urban flooding

Acknowledgements

Financial Support

- GAIA project, Ministry of Land, Infrastructure, Transport and **Tourism**
- JST-Mirai Program "Development of the crisis navigator for individuals", Japan Science and Technology Agency
- the social cooperation program "Futuristic System for Urban Flood Risk Management and Control", the University of Tokyo

Provision of Data and Research Field

- Keihin river office bureau
- Yokohama City

Majority of the presented works were conducted at the Department of Urban engineering, the University of Tokyo

Selected References

Y. Shibuo and H. Furumai, Advances in Urban Stormwater Management in Japan: A Review, J. Disaster Res., Vol.16 No.3, pp. 310-320, 2021. https://doi.org/10.20965/jdr.2021.p0310

C. Saito, M. Nakashima, R. Kawaguchi, Urban Flood Disaster Monitoring Services by Using Manhole with Built-in Antenna (Smart Manhole Cover), MEIDEN REVIEW Series Vol.176, No.2, 2019. https://www.meidensha.co.jp/rd/rd_02/rd_02_02/rd_0 2_02_08/rd_02_02_05_01/pdf/Review_176_03_web_1 90603.pdf

Department of Urban Engineering, the University of Tokyo Futuristic System for Urban Flood Risk Management and Control

scpmirai.t.u-tokyo.ac.jp

終/END

Yoshihiro Shibuo shibuo@kochi-u.ac.jp