

Riding the Waves of Change

Navigating Global Public Health Threats and Climate Challenges from Regulations to Operations

Nicole McLellan Water Treatment Process Specialist Stantec

Agenda

- 1. Emerging Public Health Threats & Considerations for Water Regulators
- 2. Tackling Emerging Contaminants & Implications for Water Treatment
- Embracing a New Normal & Developing a Path Forward for Operators

Global Water-Climate Challenges

- Population Growth
- Urbanisation
- Climate Change & Natural Disasters
- Emerging Contaminants

...are putting pressure on water resources worldwide

ш

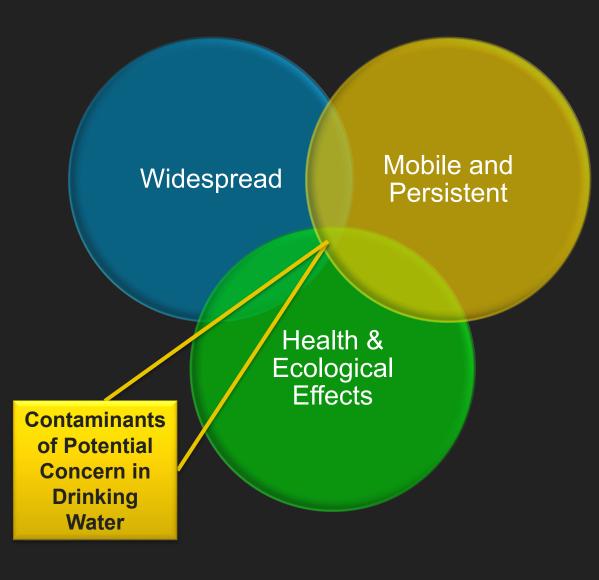
Global Water-Climate Challenges

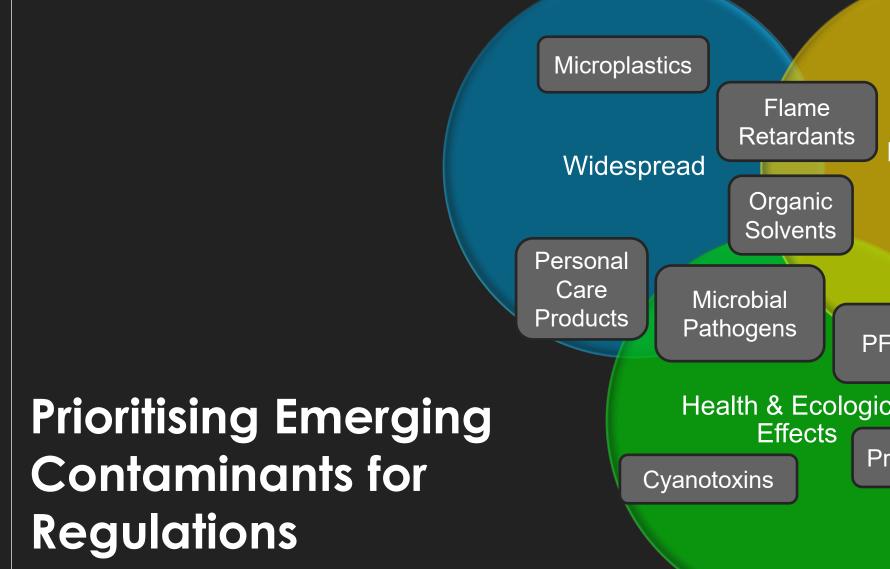
Water Quantity

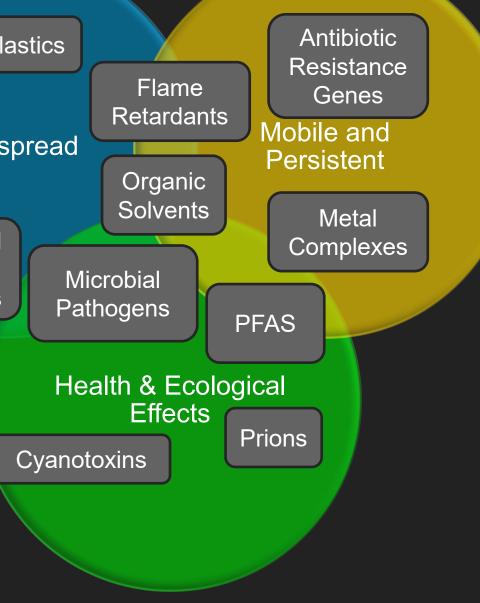
4

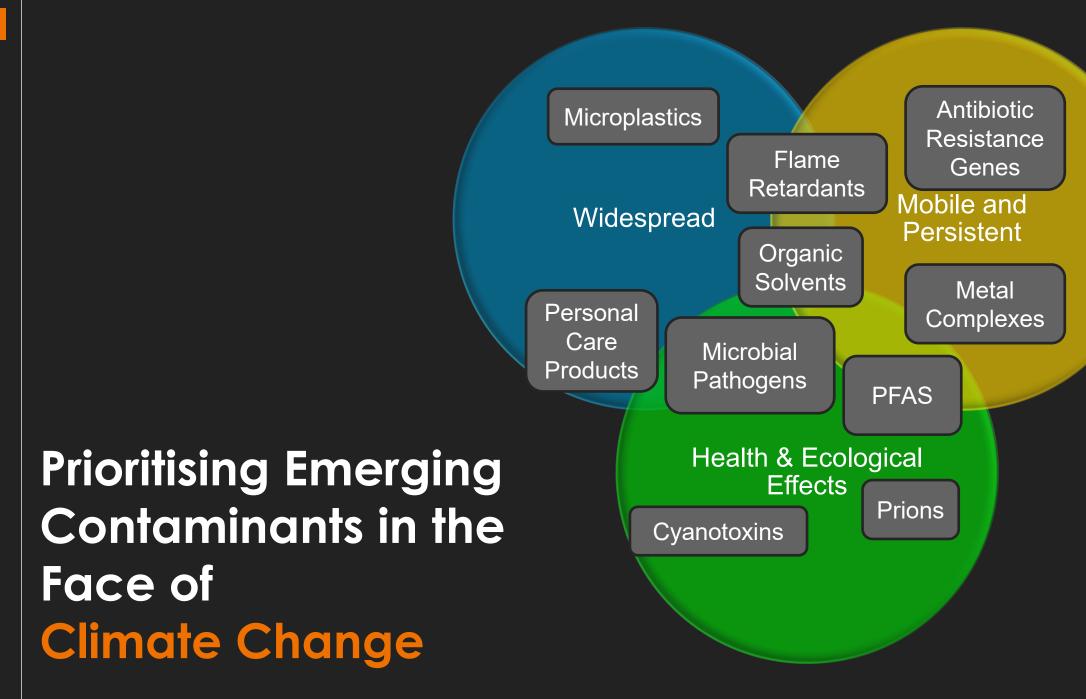
Global Water-Climate Challenges

Water Quantity Seasonal Impacts on Water Quality


Global Water-Climate Challenges


Water Quantity Seasonal Impacts on Water Quality Algal Blooms


How do we define Emerging Contaminants?


Emerging Contaminants are not well defined in the literature.

- Contaminants that are <u>not</u> currently regulated and <u>not</u> routinely monitored
- Widespread occurrence
- Highly mobile and/or persistent in the environment
- Pose a human health or environmental risk

Philosophy of Control

Emerging contaminants will be managed by considering:

- Sources and Sinks in the environment
- Effective Treatment
 Barriers
- Understanding their
 Ultimate Fate in waste streams

Water Treatment Mechanisms for Contaminant Management

Removal	 Adsorption (GAC) Size-Exclusion (Membranes) Clarification "Transfer Technologies" 		
Inactivation / Destruction	 UV Light Chemical Oxidation High-energy destruction 		
Degradation	Biological FiltrationDigestion Processes		

Framework for Management of Multiple Emerging Contaminants

		Removal	Inactivation/ Destruction	Degradation	
iicacy	Broad-Spectrum Effectiveness				
Treatment Efficacy	Effective for Some of this Class				
Treatr	Little to No Effectiveness				

Treatment Mechanism

R.I.D.D. Framework for Metal Complexes

Metal Complexes	Removal	Inactivation / Destruction	Degradation
Broad-Spectrum Effectiveness	RO/NF membranes		
Effective for Some Contaminants or Conditions	lon exchange Adsorption Conventional WTP	Chemical Oxida	ation/Reduction Biological remediation
Little to No Effectiveness			Conventional WWTP

R.I.D.D. Framework for Flame Retardants

Flame Retardants	Removal	Inactivation / Degradation Destruction
Broad-Spectrum Effectiveness	RO membranes Adsorption	High energy destructive technologies Image: Comparison of the second
Effective for Some Contaminants or Conditions	lon exchange NF membranes	AOPs Chemical oxidation
Little to No Effectiveness	Conventional WTP Conventional WWTP	Biological remediation Conventional WWTP

R.I.D.D. Framework for Microbial Pathogens

Microbial Pathogens	Removal	Inactivation / Destruction	Degradation
Broad-Spectrum Effectiveness	RO/NF membranes	UV light AOPs High Energy Destructive Technologies	
Effective for Some Contaminants or Conditions	Adsorption UF membranes Specialty Coagulants Conventional WTP	Advanced WWTP Chemical oxidation	WWTP Disinfection Biological remediation
Little to No Effectiveness	MF membranes Ion Exchange Conventional WWTP		Conventional WWTP

Emerging Contaminant Management Framework: Case Study 1

ltem	Description
Problem Statement	 Primary river water supply with potential industrial contamination upstream Elevated PFAS in River Algal Bloom Risk in River Taste & Odour Concerns Groundwater wells also available
Existing Treatment	 Conventional coagulation, flocculation, sedimentation with PAC (powdered activated carbon) dosing Dual-media filtration (GAC) Disinfection: Chlorination
Planning Approach	 Evaluate efficacy of existing treatment train & identify gaps in treatment Evaluate alternative processes to improve resilience of treatment

	PFAS, T&O, Algae, Cyanotoxins		Treatment Mechanism			
			Source Water Management	Removal*	Inactivation / Destruction	
		Broad-Spectrum	 Blending Alternative supply 	 Membranes GAC contactors 	 Requires high- energy destructive technology 	
	Treatment Efficacy	Effective for Some	• Aeration	 GAC replacement PAC dosing 	• Ozonation	
		Little to No Effectiveness	 Additional intake pipe location 	• DAF alternative		
	* Removal technologies require waste management practices for PFAS					

PFAS, T&O, Algae, Cyanotoxins		Treatment Mechanism			
		Source Water Management	Removal*	Inactivation / Destruction	
	Broad-Spectrum	 Blending Alternative supply 	 Membranes GAC contactors 	 Requires high- energy destructive technology 	
Treatment Efficacy	Effective for Some	• Aeration	 GAC replacement PAC dosing 	• Ozonation	
	Little to No Effectiveness	 Additional intake pipe location 	• DAF alternative		
			LEGEND		
* Removal technologies require waste management practices for PFAS		LOWER COST	MODERATE COST	HIGH COST	

How Resilient is Your Facility in the Face of Emerging Challenges?

Emerging Contaminants Framework Summary

Assess Existing Conditions

• Understanding treatment mechanisms can help to identify existing gaps in process barriers

Consider Broad-Spectrum Barriers

• Broad-spectrum treatment technologies may address multiple treatment gaps

Understand "Ultimate Fate" of Contaminants

 Removal technologies may need to be coupled with waste management "destructive" technologies to mitigate the life-cycle of persistent contaminants

Evaluate Cost-Benefits

• Source water management opportunities may provide the lowest cost long-term solution

NGЕ

н С

0

S

≥

ш

Ċ

DIN

Operators don't like surprises.

However, simplifying the responsibilities of operators can lead to complacency and associated errors.

It is important to maintain operator engagement with regular training and establishment of plant-specific Key Performance Indicators (KPIs) and routine evaluations of critical control points.

CASE STUDY: WATER TREATMENT PLANT SUSCEPTIBLE TO FLOODS, WARMER SUMMERS & HARMFUL ALGAL BLOOMS

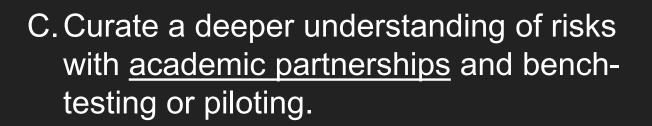
Climate Change Risk Management Framework to Prioritise Issues & Improvements

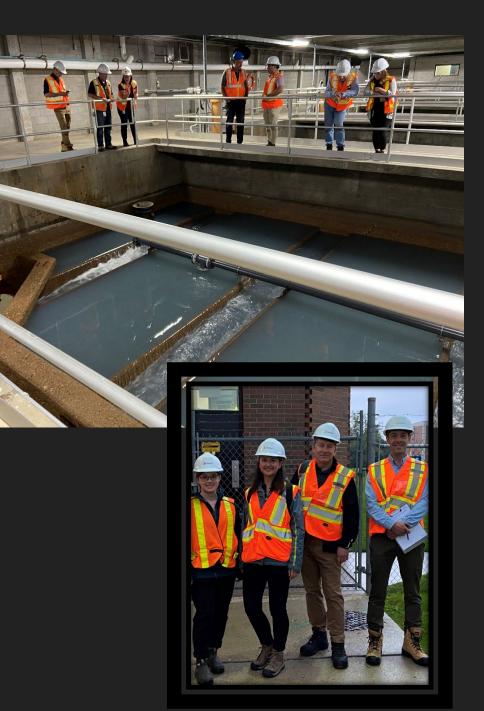
We need to weigh the likelihood of risk with the consequence of risk.

		Consequence				
		Catastrophic (5)	Major (4)	Moderate (3)	Minor (2)	Insignificant (1)
	Almost Certain (5)	25	20	15	10	5
Likelihood	Likely (4)	20	16	12	8	4
Likelihood	Moderate (3)	15	12	9	6	3
	Unlikely (2)	10	8	6	4	2
	Rare (1)	5	4	3	2	1

Assessment of Water-Climate Threats

We must <u>understand the risks</u> to prioritize and solve them.




Risk	Likelihood of Risk	Consequence of Risk	Overall Score / Priority
1. Algal Blooms	2	2	4
2. Elevated organics loading	3	2.5	7.5
3. Elevated turbidity	3	1	3

Turn your risks into response.

A. Develop Action Plans and <u>practice</u> Response Plans on a regular basis.

B. Set progressive <u>performance targets</u> beyond regulatory criteria to foster a culture of optimisation and bestpractices.

 \bigcirc

Nicole McLellan Nicole.mclellan@stantec.com

Questions?